Review

A SYSTEMATIC REVIEW OF AUTOPSY FINDINGS IN DEATHS AFTER COVID-19 VACCINATION

Nicolas Hulscher, BS^{1*}, Paul E. Alexander, PhD², Richard Amerling, MD²,

Heather Gessling, MD², Roger Hodkinson, MD², William Makis, MD³, Harvey A.

Risch, MD, PhD⁴, Mark Trozzi, MD², Peter A. McCullough, MD, MPH⁵²

¹University of Michigan School of Public Health, Ann Arbor, MI, USA

²The Wellness Company, Boca Raton, FL

³Cross Cancer Institute, Alberta Health Services, 11560 University Avenue,

Edmonton, AB T6G 1Z2, Canada.

⁴Professor Emeritus, Yale University School of Public Health, New Haven, CT
⁵Truth for Health Foundation, Tucson, AZ, ORCID ID: 0000-0002-0997-6355
*Correspondence: nichulscher@gmail.com (Nicolas Hulscher)

Word Count: 2281

Abstract

Background: The rapid development and widespread deployment of COVID-19 vaccines, combined with a high number of adverse event reports, have led to concerns over possible mechanisms of injury including systemic lipid nanoparticle (LNP) and mRNA distribution, spike protein-associated tissue damage, thrombogenicity, immune system dysfunction, and carcinogenicity. The aim of this systematic review is to investigate possible causal links between COVID-19 vaccine administration and death using autopsies and post-mortem analysis.

Methods: We searched for all published autopsy and necropsy reports relating to COVID-19 vaccination up until May 18th, 2023. We initially identified 678 studies and, after screening for our inclusion criteria, included 44 papers that contained 325 autopsy cases and one necropsy case. Three physicians independently reviewed all deaths and determined whether COVID-19 vaccination was the direct cause or contributed significantly to death.

Findings: The most implicated organ system in COVID-19 vaccine-associated death was the cardiovascular system (53%), followed by the hematological system (17%), the respiratory system (8%), and multiple organ systems (7%). Three or more organ systems were affected in 21 cases. The mean time from vaccination to

death was 14.3 days. Most deaths occurred within a week from last vaccine administration. A total of 240 deaths (73.9%) were independently adjudicated as directly due to or significantly contributed to by COVID-19 vaccination.

Interpretation: The consistency seen among cases in this review with known COVID-19 vaccine adverse events, their mechanisms, and related excess death, coupled with autopsy confirmation and physician-led death adjudication, suggests there is a high likelihood of a causal link between COVID-19 vaccines and death in most cases. Further urgent investigation is required for the purpose of clarifying our findings.

Keywords: Autopsy; necropsy; COVID-19; COVID-19 vaccines; mRNA; SARS-CoV-2 vaccination; death; excess mortality; spike protein; organ system

Research in context

Evidence before this study

COVID-19 vaccines, with known mechanisms of injury to the human body and a substantial number of adverse event reports, represent an exposure that we hypothesized to be possibly linked to death in some cases. Thus, we searched PubMed and ScienceDirect for all published autopsy and necropsy reports relating to COVID-19 vaccination through May 18th, 2023 using keywords relating to COVID-19 vaccines, death, autopsy, and necropsy. We found that no comprehensive review of autopsy findings in a large series of deaths after COVID-19 vaccination that accounts for the current state of knowledge has been conducted. The mechanisms of death from COVID-19 vaccination remain largely unexplored.

Added value of this study

Because the state of knowledge has advanced since the time of the original publications, new assessments regarding COVID-19 vaccine adverse events can be made. Based on the previously published literature of COVID-19 vaccine adverse events, their mechanisms, and related excess death, coupled with autopsy confirmation and physician-led death adjudication, we found a high likelihood of a causal link between COVID-19 vaccines and death among most of the 326 included cases. This is the first study that indicates a high probability of causality between COVID-19 vaccine administration and death in many cases. To date, this is the largest review of autopsy findings in deaths after COVID-19 vaccination, helping the medical community to better understand fatal COVID-19 vaccine syndromes.

Implications of all the available evidence

Further urgent investigation is required aimed at confirming our results and further elucidating the mechanisms underlying the described fatal outcomes with the goal of risk mitigation for the large numbers of individuals who have taken one or more COVID-19 vaccines. If a large number of deaths are indeed causally linked to COVID-19 vaccination, the implications could be immense, including: the complete withdrawal of all COVID-19 vaccines from the global market, suspension of all remaining COVID-19 vaccine mandates and passports, loss of public trust in government and medical institutions, investigations and inquiries into the censorship, silencing and persecution of doctors and scientists who raised these concerns, and compensation for those who were harmed as a result of the administration of COVID-19 vaccines.

Introduction

As of May 31st, 2023, SARS-CoV-2 has infected an estimated 767,364,883 people globally, resulting in 6,938,353 deaths¹. As a direct response to this worldwide catastrophe, governments adopted a coordinated approach to limit caseloads and mortality utilizing a combination of non-pharmaceutical interventions (NPIs) and novel gene-based vaccine platforms. The first doses of vaccine were administered less than 11 months after the identification of the SARS-CoV-2 genetic sequence (in the United States, under the Operation Warp Speed initiative), which represented the fastest vaccine development in history with limited assurances of short and long-term safety². At the time of writing, about 69% of the world population have been inoculated with at least one dose of a COVID-19 vaccine¹.

The most frequently utilized COVID-19 vaccine platforms include inactivated virus (Sinovac – CoronaVac), protein subunit (Novavax – NVX-CoV2373), viral vector (AstraZeneca – ChAdOx1 nCoV-19, Johnson & Johnson – Ad26.COV2.S), and messenger RNA (Pfizer-BioNTech – BNT162b2, Moderna – mRNA-1273)³. All utilize mechanisms that can cause serious adverse events; most involve the uncontrolled synthesis of the spike glycoprotein (SP) as the basis of the immunological response. Circulating SP is the likely deleterious mechanism through which COVID-19 vaccines produce adverse effects^{4,5,7,8,10,11}. SP and/or subunits/peptide fragments can trigger ACE2 receptor degradation and internalization, which may also cause destabilization of the renin-angiotensin system (RAS), resulting in possible enhanced inflammation, vasoconstriction, and thrombosis⁴. SP activates platelets, causes endothelial damage, and directly promotes arterial and venous thrombosis⁵. Moreover, immune system cells that have taken up the lipid nanoparticles (LNPs) then release them back into the circulation with elevated numbers of exosomes containing SP and microRNAs that play a role in inducing a signaling response in recipient cells at distant sites, resulting in severe inflammatory consequences⁵. Further, long term cancer control may be jeopardized in those injected with mRNA COVID-19 vaccines because of IRF7 and IRF9 suppression⁵. There is a distinct potential of a causal link between SARS-CoV-2 mRNA vaccination and neurodegenerative disease, myocarditis, immune thrombocytopenia, Bell's palsy, liver disease, impaired adaptive immunity, impaired DNA damage response and tumorigenesis⁵.

These findings are supported by the recent discovery that repeated COVID-19 vaccination with mRNA-based vaccines causes production of abnormally high levels of IgG4 antibodies which can lead to immune tolerance to SP, immune suppression, and promote the development of autoimmune diseases, myocarditis, and cancer growth⁶.

Neurotoxic effects of SP may cause or contribute to the post-COVID syndrome, including headache, tinnitus, autonomic dysfunction, and small fiber neuropathy⁷. Specific to the administration of viral vector COVID-19 vaccines (AstraZeneca; Johnson and Johnson) a new clinical syndrome called vaccineinduced immune thrombotic thrombocytopenia (VITT) was identified in 2021 and characterized by the development of thromboses at atypical body sites combined with severe thrombocytopenia after vaccination⁹. The pathogenesis of this lifethreatening side effect is currently unknown, though it has been proposed that VITT is caused by post-vaccination antibodies against platelet factor 4 (PF4) triggering extensive platelet activation⁹. mRNA-based vaccines rarely cause VITT, but they are associated with myocarditis, or inflammation of myocardium¹⁰. The mechanisms for the development of myocarditis after COVID-19 vaccination are not clear, but it has been hypothesized that it may be caused by molecular mimicry of SP and self-antigens, immune response to mRNA, and dysregulated cytokine expression¹⁰. In adolescents and young adults diagnosed with post-mRNA vaccine myocarditis, free SP was detected in the blood while vaccinated controls had no circulating SP¹¹. It has been demonstrated that SARS-CoV-2 spike mRNA vaccine sequences can circulate in the blood for at least 28 days after vaccination¹². These

data indicate that adverse events may occur for an unknown period after vaccination, with SP playing an important potential etiological role.

A Freedom of Information Act (FOIA) document obtained from the Australian Government, titled Nonclinical Evaluation of BNT162b2 [mRNA] COVID-19 vaccine (COMIRNATY), shows systemic distribution of the LNPs containing mRNA after vaccine administration in rats, concluding that LNPs reached their highest concentration at the injection site, followed by the liver, spleen, adrenal glands, ovaries, and bone marrow (femur) over 48 hours¹³. This biodistribution data suggests that SP may be expressed in cells from many vital organ systems, raising significant concerns regarding the safety profile of COVID-19 vaccines. Given the identified vaccination syndromes and their possible mechanisms, the frequency of adverse event reports is expected to be high, especially given the vast number of vaccine doses administered globally.

Through May 5th, 2023, the Vaccine Adverse Events Reporting System (VAERS) contained 1,556,050 adverse event reports associated with COVID-19 vaccines, including 35,324 deaths, 26,928 myocarditis and pericarditis, 19,546 heart attacks, and 8,701 thrombocytopenia reports¹⁴. If the alarmingly high number of reported deaths are indeed causally linked to COVID-19 vaccination, the implications could be immense, including: the complete withdrawal of all COVID-19 vaccines from the global market, suspension of all remaining COVID-19 vaccine mandates and passports, loss of public trust in government and medical institutions, investigations and inquiries into the censorship, silencing and persecution of doctors and scientists who raised these concerns, and compensation for those who were harmed as a result of the administration of COVID-19 vaccines. Using VAERS data alone to establish a causal link between COVID-19 vaccination and death, however, is not possible due to many limitations and confounding factors.

Autopsies are one of the most powerful diagnostic tools in medicine to establish cause of death and clarify the pathophysiology of disease¹⁵. COVID-19 vaccines, with plausible mechanisms of injury to the human body and a substantial number of adverse event reports, represent an exposure that may be causally linked to death in some cases. The purpose of this systematic review is to investigate possible causal links between COVID-19 vaccine administration and death using autopsies and post-mortem analysis.

Methods

We performed a systematic review of all published autopsy and necropsy reports relating to COVID-19 vaccination through May 18th, 2023. All autopsy studies that include COVID-19 vaccines as a possible cause of death were included. All necropsy (analysis of dead tissue) studies that include COVID-19 vaccines as a possible cause of organ death were included. No other restrictions were imposed. The following databases were used: PubMed and ScienceDirect. The following keywords were used: 'COVID-19 Vaccine', 'SARS-CoV-2 Vaccine', 'COVID Vaccination', and 'Post-mortem', 'Autopsy', or 'Necropsy'. All selected studies were screened for relevant literature contained in their references. Because the state of knowledge has advanced since the time of the original publications, we performed a contemporary review: three physicians (RH, WM, PAM) with experience in death adjudication and anatomical/clinical pathology independently reviewed the available information of each case and determined whether or not COVID-19 vaccination was the direct cause or contributed significantly to the mechanism of death described. Agreement was reached when two or more physicians adjudicated the case concordantly. For the study by Chaves²⁰, only cardiovascular and hematological system related cases were adjudicated as being linked to the vaccine due to a high probability of COVID-19 vaccination contributing to death and missing individual case information for the other individuals. Given the presence of some missing data, we used all available

information to calculate the descriptive statistics. Estimated age (exact age not given) and inferred time from last vaccine administration to death (no definitive time given) were excluded from calculations.

Results

A database search yielded 678 studies that had potential to meet our inclusion criterion. 562 duplicates were screened out. Out of the remaining 116 papers, 36 met our specified inclusion criterion. Through further analysis of references, we located 18 additional papers, with 8 of them meeting our inclusion criterion. In total, we found 44 studies that contained autopsy or necropsy reports of COVID-19 vaccinees (Figure 1).

Table 1 summarizes the 44 studies¹⁶⁻⁵⁹. There were a total of 325 autopsy cases and 1 necropsy case (heart). The mean age of death was 70.4 years and there were 139 females (42.6%). Most received a Pfizer/BioNTech vaccine (41%), followed by Sinovac (37%), AstraZeneca (13%), Moderna (7%), Johnson & Johnson (1%), and Sinopharm (1%).

The cardiovascular system was most frequently implicated (53%), followed by hematological (17%), respiratory (8%), multiple organ systems (7%), neurological (4%), immunological (3%), and gastrointestinal (1%). In 7% of cases, the cause of death was either unknown, non-natural (drowning, head injury, etc.) or infection (Figure 2). One organ system was affected in 302 cases, two in 3 cases, three in 8 cases, and four or more in 13 cases (Figure 3).

The number of days from vaccination until death was 14.3 (mean), 3 (median) irrespective of dose, 7.8 (mean), 3 (median) after one dose, 23.2 (mean), 2 (median) after two doses, and 5.7 (mean), 2 (median) after three doses. The distribution of days from last vaccine administration to death is highly right skewed, showing that most of the deaths occurred within a week from last vaccination (Figure 4). 240 deaths (73.9%) were independently adjudicated by three physicians to be significantly linked to COVID-19 vaccination (Table S1). Among adjudicators, there was complete independent agreement (all three physicians) of vaccination causing or contributing to death in 203 cases (62.5%). The one necropsy case was judged to be linked to vaccination with complete agreement.

Discussion

We found 73.9% of deaths after COVID-19 vaccination were attributable to fatal vaccine injury syndromes. The cardiovascular system was by far the most

implicated organ system in death, followed by hematological, respiratory, multiple organ systems, neurological, immunological, and gastrointestinal (Figure 2), with three or more organ systems affected in 21 cases (Figure 3). The majority of deaths occurred within a week from last vaccine administration (Figure 4) and were independently adjudicated by three physicians to be significantly associated with vaccination (Table S1). These results corroborate known COVID-19 vaccineinduced syndromes and show significant, temporal associations between COVID-19 vaccination and death involving multiple organ systems, with a predominant implication of the cardiovascular and hematological systems. Criteria of causality from an epidemiological perspective have been met including biological plausibility, temporal association, internal and external validity, coherence, analogy, and reproducibility with each successive report of death after COVID-19 vaccination.

Our findings amplify concerns regarding COVID-19 vaccine adverse events and their mechanisms. SP's deleterious effects^{5,6,7,8,10,11}, especially on the heart^{10,11}, likely explains the high proportion of cardiovascular deaths seen in our study. They also highlight the involvement of multiple organ systems in some of the deaths associated with COVID-19 vaccination. This might be attributed to the Multisystem Inflammatory Syndrome (MIS) that has been detected following COVID-19 vaccination in both children⁶⁰ and adults⁶¹. A possible mechanism by which MIS occurs after vaccination could be the systemic distribution of the LNPs containing mRNA after vaccine administration¹³ and the consequent systemic SP expression and circulation resulting in system-wide inflammation. A significant proportion of cases were due to hematological system adverse events, which is not surprising given that VITT⁶² and pulmonary embolism (PE)⁶³ have been reported in the literature as serious adverse events following COVID-19 vaccination. Deaths caused by adverse effects to the respiratory system were also relatively common in our review, a finding that is in line with the possibility of developing acute respiratory distress syndrome (ARDS) or drug-induced interstitial lung disease (DIILD) after COVID-19 vaccination^{64,65}. Although uncommon among cases in this study, immunological⁶⁶, neurological⁶⁷, and gastrointestinal⁶⁸ adverse events can still occur after COVID-19 vaccination and, as with the cardiovascular system, may be directly or indirectly caused by the systemic expression or circulation of SP. Given the average time (14.3 days) in which cases died after vaccination, a temporal association between COVID-19 vaccination and death among most cases is further supported by the finding that SARS-CoV-2 spike mRNA vaccine sequences can circulate in the blood for at least 28 days after vaccination¹². Most of the deployed vaccine platforms are associated with death, suggesting that they share a common feature that causes adverse effects, which is most likely SP.

The large number of COVID-19 vaccine induced deaths evaluated in this review is consistent with multiple papers that report excess mortality after vaccination. Pantazatos and Seligmann found that all-cause mortality increased 0-5 weeks post-injection in most age groups resulting in 146,000 to 187,000 vaccineassociated deaths in the United States between February and August of 2021⁶⁹. With similar findings, Skidmore estimated that 278,000 people may have died from the COVID-19 vaccine in the United States by December 2021⁷⁰. These concerning results were further elucidated by Aarstad and Kvitastein, who found that among 31 countries in Europe, a higher population COVID-19 vaccine uptake in 2021 was positively correlated with increased all-cause mortality in the first nine months of 2022 after controlling for alternative explanations⁷¹. Furthermore, excess mortality from non-COVID-19 causes has been detected in many countries since the mass vaccination programs began^{72,73,74,75,76,77}, suggesting a common deleterious exposure among populations. Pantazatos estimated that VAERS deaths are underreported by a factor of 20^{69} . If we apply this underreporting factor to the May 5th, 2023, VAERS death report count of 35,324¹⁴, the number of deaths in the United States alone becomes 706,480. If this extrapolated number of deaths were to be confirmed, the COVID-19 vaccines would represent the largest medical failure in human history.

In summary, we identified a large series of deaths after COVID-19 vaccination, confirmed with autopsy and necropsy, to help the medical community better understand fatal COVID-19 vaccine syndromes. The consistency seen among cases in this review with known COVID-19 vaccine adverse events, their mechanisms, and related excess death, coupled with autopsy confirmation and expert physician death adjudication, suggests there is a high likelihood of a causal link between COVID-19 vaccines and death in most cases. Even with substantial evidence, our paper cannot definitively determine causality as our paper has all the limitations of systematic reviews of previously published papers including selection bias, publication bias, and confounding variables. Further urgent investigation is required aimed at confirming our results and further elucidating the mechanisms underlying the described fatal outcomes with the goal of risk mitigation for the large numbers of individuals who have taken one or more COVID-19 vaccines.

Acknowledgements

None.

Conflict of Interest

Drs Alexander, Amerling, Hodkinson, Makis, McCullough, Risch, Trozzi are affiliated with and receive salary support and or hold equity positions in The Wellness Company, Boca Raton, FL which had no role in funding, analysis, or publication.

References

- WHO Coronavirus (COVID-19) Dashboard [Internet]. World Health Organization; [cited 2023 May 17]. Available from: <u>https://covid19.who.int/</u>
- Kuter BJ, Offit PA, Poland GA. The development of COVID-19 vaccines in the United States: Why and how so fast? Vaccine. 2021 Apr 28;39(18):2491-2495. doi: 10.1016/j.vaccine.2021.03.077. Epub 2021 Mar 26. PMID: 33824043; PMCID: PMC7997594
- 3. Graña C, Ghosn L, Evrenoglou T, Jarde A, Minozzi S, Bergman H, Buckley BS, Probyn K, Villanueva G, Henschke N, Bonnet H, Assi R, Menon S, Marti M, Devane D, Mallon P, Lelievre JD, Askie LM, Kredo T, Ferrand G, Davidson M, Riveros C, Tovey D, Meerpohl JJ, Grasselli G, Rada G, Hróbjartsson A, Ravaud P, Chaimani A, Boutron I. Efficacy and safety of COVID-19 vaccines. Cochrane Database Syst Rev. 2022 Dec 7;12(12):CD015477. doi: 10.1002/14651858.CD015477. PMID: 36473651; PMCID: PMC9726273.
- Trougakos IP, Terpos E, Alexopoulos H, Politou M, Paraskevis D, Scorilas A, Kastritis E, Andreakos E, Dimopoulos MA. Adverse effects of COVID-

19 mRNA vaccines: the spike hypothesis. Trends Mol Med. 2022
Jul;28(7):542-554. doi: 10.1016/j.molmed.2022.04.007. Epub 2022 Apr 21.
PMID: 35537987; PMCID: PMC9021367.

- Seneff S, Nigh G, Kyriakopoulos AM, McCullough PA. Innate immune suppression by SARS-CoV-2 mRNA vaccinations: The role of Gquadruplexes, exosomes, and MicroRNAs. Food Chem Toxicol. 2022 Jun;164:113008. doi: 10.1016/j.fct.2022.113008. Epub 2022 Apr 15. PMID: 35436552; PMCID: PMC9012513.
- Uversky VN, Redwan EM, Makis W, Rubio-Casillas A. IgG4 Antibodies Induced by Repeated Vaccination May Generate Immune Tolerance to the SARS-CoV-2 Spike Protein. Vaccines (Basel). 2023 May 17;11(5):991. doi: 10.3390/vaccines11050991. PMID: 37243095; PMCID: PMC10222767.
- 7. Theoharides TC. Could SARS-CoV-2 Spike Protein Be Responsible for Long-COVID Syndrome? Mol Neurobiol. 2022 Mar;59(3):1850-1861. doi: 10.1007/s12035-021-02696-0. Epub 2022 Jan 13. PMID: 35028901; PMCID: PMC8757925.
- Theoharides TC, Conti P. Be aware of SARS-CoV-2 spike protein: There is more than meets the eye. J Biol Regul Homeost Agents. 2021 May-Jun;35(3):833-838. doi: 10.23812/THEO EDIT 3 21. PMID: 34100279.

- 9. Aleem A, Nadeem AJ. Coronavirus (COVID-19) Vaccine-Induced Immune Thrombotic Thrombocytopenia (VITT). 2022 Oct 3. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2023 Jan–. PMID: 34033367.
- 10.Bozkurt B, Kamat I, Hotez PJ. Myocarditis With COVID-19 mRNA Vaccines. Circulation. 2021 Aug 10;144(6):471-484. doi: 10.1161/CIRCULATIONAHA.121.056135. Epub 2021 Jul 20. PMID: 34281357; PMCID: PMC8340726.
- 11. Yonker LM, Swank Z, Bartsch YC, Burns MD, Kane A, Boribong BP, Davis JP, Loiselle M, Novak T, Senussi Y, Cheng CA, Burgess E, Edlow AG, Chou J, Dionne A, Balaguru D, Lahoud-Rahme M, Arditi M, Julg B, Randolph AG, Alter G, Fasano A, Walt DR. Circulating Spike Protein Detected in Post-COVID-19 mRNA Vaccine Myocarditis. Circulation. 2023 Mar 14;147(11):867-876. doi: 10.1161/CIRCULATIONAHA.122.061025. Epub 2023 Jan 4. PMID: 36597886; PMCID: PMC10010667.
- 12.Castruita JAS, Schneider UV, Mollerup S, Leineweber TD, Weis N, Bukh J, Pedersen MS, Westh H. SARS-CoV-2 spike mRNA vaccine sequences circulate in blood up to 28 days after COVID-19 vaccination. APMIS. 2023 Mar;131(3):128-132. doi: 10.1111/apm.13294. Epub 2023 Jan 29. PMID: 36647776; PMCID: PMC10107710.

- 13. Nonclinical Evaluation of BNT162b2 [mRNA] COVID-19 vaccine (COMIRNATY) [Internet]. Australian Government Department of Health -Therapeutic Goods Administration; 2021 [cited 2023 May 23]. Available from: https://www.tga.gov.au/sites/default/files/foi-2389-06.pdf
- 14. Vaccine Adverse Event Reporting System (VAERS) [online]. Available at: <u>https://vaers.hhs.gov</u>.
- 15.Scarl R, Parkinson B, Arole V, Hardy T, Allenby P. The hospital autopsy: the importance in keeping autopsy an option. Autopsy Case Rep. 2022 Feb 17;12:e2021333. doi: 10.4322/acr.2021.333. PMID: 35252044; PMCID: PMC8890781.
- Hojberg Y, Abdeljaber M, Prahlow JA. Generalized Eosinophilia Following Moderna COVID-19 Vaccine Administration: A Case Report. Acad Forensic Pathol. 2023 Mar;13(1):9-15. doi: 10.1177/19253621231157933. Epub 2023 Mar 28. PMID: 37091194; PMCID: PMC10119868.
- 17.Nushida H, Ito A, Kurata H, Umemoto H, Tokunaga I, Iseki H, Nishimura A. A case of fatal multi-organ inflammation following COVID-19 vaccination. Leg Med (Tokyo). 2023 Mar 20;63:102244. doi: 10.1016/j.legalmed.2023.102244. Epub ahead of print. PMID: 36990036;

PMCID: PMC10027302.

- 18. Jeon YH, Choi S, Park JH, Lee JK, Yeo NS, Lee S, Suh YL. Sudden Death Associated With Possible Flare-Ups of Multiple Sclerosis After COVID-19 Vaccination and Infection: A Case Report and Literature Review. J Korean Med Sci. 2023 Mar 13;38(10):e78. doi: 10.3346/jkms.2023.38.e78. PMID: 36918031; PMCID: PMC10010908.
- 19.Esposito M, Cocimano G, Vanaria F, Sessa F, Salerno M. Death from COVID-19 in a Fully Vaccinated Subject: A Complete Autopsy Report. Vaccines (Basel). 2023 Jan 9;11(1):142. doi: 10.3390/vaccines11010142. PMID: 36679987; PMCID: PMC9865400.
- 20. Chaves JJ, Bonilla JC, Chaves-Cabezas V, Castro A, Polo JF, Mendoza O, Correa-Rodríguez J, Piedrahita AC, Romero-Fandiño IA, Caro MV, González AC, Sánchez LK, Murcia F, Márquez G, Benavides A, Quiroga MDP, López J, Parra-Medina R. A postmortem study of patients vaccinated for SARS-CoV-2 in Colombia. Rev Esp Patol. 2023 Jan-Mar;56(1):4-9. doi: 10.1016/j.patol.2022.09.003. Epub 2022 Oct 31. PMID: 36599599; PMCID: PMC9618417.
- 21.Mörz M. A Case Report: Multifocal Necrotizing Encephalitis and Myocarditis after BNT162b2 mRNA Vaccination against COVID-19.
 Vaccines (Basel). 2022 Oct 1;10(10):1651. doi: 10.3390/vaccines10101651.
 PMID: 36298516; PMCID: PMC9611676.

- 22. Alunni V, Bernardi C, Chevalier N, Cabusat C, Quatrehomme G, Torrents J, Biglia E, Gaillard Y, Drici MD. Postmortem PF4 antibodies confirm a rare case of thrombosis thrombocytopenia syndrome associated with ChAdOx1 nCoV-19 anti-COVID vaccination. Int J Legal Med. 2023 Mar;137(2):487-492. doi: 10.1007/s00414-022-02910-1. Epub 2022 Oct 27. PMID: 36289074; PMCID: PMC9607767.
- 23. Takahashi M, Kondo T, Yamasaki G, Sugimoto M, Asano M, Ueno Y, Nagasaki Y. An autopsy case report of aortic dissection complicated with histiolymphocytic pericarditis and aortic inflammation after mRNA COVID-19 vaccination. Leg Med (Tokyo). 2022 Nov;59:102154. doi: 10.1016/j.legalmed.2022.102154. Epub 2022 Sep 29. PMID: 36191411; PMCID: PMC9519380.
- 24.Murata K, Nakao N, Ishiuchi N, Fukui T, Katsuya N, Fukumoto W, Oka H, Yoshikawa N, Nagao T, Namera A, Kakimoto N, Oue N, Awai K, Yoshimoto K, Nagao M. Four cases of cytokine storm after COVID-19 vaccination: Case report. Front Immunol. 2022 Aug 15;13:967226. doi:

10.3389/fimmu.2022.967226. PMID: 36045681; PMCID: PMC9420842.

25.Satomi H, Katano H, Kanno H, Kobayashi M, Ohkuma Y, Hashidume N, Usui T, Tsukada S, Ito I. An autopsy case of fulminant myocarditis after severe acute respiratory syndrome coronavirus 2 vaccine inoculation. Pathol Int. 2022 Oct;72(10):519-524. doi: 10.1111/pin.13267. Epub 2022 Aug 30. PMID: 36040128; PMCID: PMC9537995.

- 26.Suzuki H, Ro A, Takada A, Saito K, Hayashi K. Autopsy findings of post-COVID-19 vaccination deaths in Tokyo Metropolis, Japan, 2021. Leg Med (Tokyo). 2022 Nov;59:102134. doi: 10.1016/j.legalmed.2022.102134. Epub 2022 Aug 20. PMID: 36037554; PMCID: PMC9392553.
- 27.Mele F, Tafuri S, Stefanizzi P, D Amati A, Calvano M, Leonardelli M, Macorano E, Duma S, De Gabriele G, Introna F, De Donno A. Cerebral venous sinus thrombosis after COVID-19 vaccination and congenital deficiency of coagulation factors: Is there a correlation? Hum Vaccin Immunother. 2022 Nov 30;18(6):2095166. doi: 10.1080/21645515.2022.2095166. Epub 2022 Jul 27. PMID: 35895937; PMCID: PMC9746424.
- 28. Yoshimura Y, Sasaki H, Miyata N, Miyazaki K, Okudela K, Tateishi Y, Hayashi H, Kawana-Tachikawa A, Iwashita H, Maeda K, Ihama Y, Hatayama Y, Ryo A, Tachikawa N. An autopsy case of COVID-19-like acute respiratory distress syndrome after mRNA-1273 SARS-CoV-2 vaccination. Int J Infect Dis. 2022 Aug;121:98-101. doi: 10.1016/j.ijid.2022.04.057. Epub 2022 Apr 30. PMID: 35500794; PMCID: PMC9054706.

29.Roncati L, Manenti A, Corsi L. A Three-Case Series of Thrombotic Deaths in Patients over 50 with Comorbidities Temporally after modRNA COVID-19 Vaccination. Pathogens. 2022 Apr 3;11(4):435. doi:

10.3390/pathogens11040435. PMID: 35456110; PMCID: PMC9032304.

- 30.Kang DH, Na JY, Yang JH, Moon SH, Kim SH, Jung JJ, Cha HJ, Ahn JH, Park YW, Cho SY, Yu HK, Lee SH, Park MY, Kim JW, Byun JH. Fulminant Giant Cell Myocarditis following Heterologous Vaccination of ChAdOx1 nCoV-19 and Pfizer-BioNTech COVID-19. Medicina (Kaunas). 2022 Mar 20;58(3):449. doi: 10.3390/medicina58030449. PMID: 35334625; PMCID: PMC8950462.
- 31.Kamura Y, Terao T, Akao S, Kono Y, Honma K, Matsue K. Fatal thrombotic microangiopathy with rhabdomyolysis as an initial symptom after the first dose of mRNA-1273 vaccine: A case report. Int J Infect Dis. 2022 Apr;117:322-325. doi: 10.1016/j.ijid.2022.02.031. Epub 2022 Feb 18.
 PMID: 35189339; PMCID: PMC8853962.
- 32.Ishioka Y, Makiguchi T, Itoga M, Tanaka H, Taima K, Goto S, Tasaka S. Acute Exacerbation of Interstitial Lung Disease After SARS-CoV-2 Vaccination: A Case Series. Chest. 2022 Dec;162(6):e311-e316. doi: 10.1016/j.chest.2022.08.2213. PMID: 36494131; PMCID: PMC9723271.

- 33.Gill JR, Tashjian R, Duncanson E. Autopsy Histopathologic Cardiac Findings in 2 Adolescents Following the Second COVID-19 Vaccine Dose. Arch Pathol Lab Med. 2022 Aug 1;146(8):925-929. doi: 10.5858/arpa.2021-0435-SA. PMID: 35157759.
- 34.Pomara C, Salerno M, Esposito M, Sessa F, Certo F, Tripodo C, Rappa F, Barbagallo GM. Histological and immunohistochemical findings in a fatal case of thrombotic thrombocytopenia after ChAdOx1 nCov-19 vaccination. Pathol Res Pract. 2022 Mar;231:153796. doi: 10.1016/j.prp.2022.153796.
 Epub 2022 Feb 4. PMID: 35144085.
- 35.Yeo A, Kuek B, Lau M, Tan SR, Chan S. Post COVID-19 vaccine deaths -Singapore's early experience. Forensic Sci Int. 2022 Jan 19;332:111199. doi: 10.1016/j.forsciint.2022.111199. Epub ahead of print. PMID: 35078041; PMCID: PMC8767909.
- 36. Ameratunga R, Woon ST, Sheppard MN, Garland J, Ondruschka B, Wong CX, Stewart RAH, Tatley M, Stables SR, Tse RD. First Identified Case of Fatal Fulminant Necrotizing Eosinophilic Myocarditis Following the Initial Dose of the Pfizer-BioNTech mRNA COVID-19 Vaccine (BNT162b2, Comirnaty): an Extremely Rare Idiosyncratic Hypersensitivity Reaction. J Clin Immunol. 2022 Apr;42(3):441-447. doi: 10.1007/s10875-021-01187-0. Epub 2022 Jan 3. PMID: 34978002; PMCID: PMC8720536.

- 37.Günther A, Brämer D, Pletz MW, Kamradt T, Baumgart S, Mayer TE, Baier M, Autsch A, Mawrin C, Schönborn L, Greinacher A, Thiele T. Complicated Long Term Vaccine Induced Thrombotic Immune Thrombocytopenia-A Case Report. Vaccines (Basel). 2021 Nov 17;9(11):1344. doi: 10.3390/vaccines9111344. PMID: 34835275; PMCID: PMC8622649.
- 38.Permezel F, Borojevic B, Lau S, de Boer HH. Acute disseminated encephalomyelitis (ADEM) following recent Oxford/AstraZeneca COVID-19 vaccination. Forensic Sci Med Pathol. 2022 Mar;18(1):74-79. doi: 10.1007/s12024-021-00440-7. Epub 2021 Nov 4. PMID: 34735684; PMCID: PMC8567127.
- 39. Choi S, Lee S, Seo JW, Kim MJ, Jeon YH, Park JH, Lee JK, Yeo NS. Myocarditis-induced Sudden Death after BNT162b2 mRNA COVID-19 Vaccination in Korea: Case Report Focusing on Histopathological Findings. J Korean Med Sci. 2021 Oct 18;36(40):e286. doi: 10.3346/jkms.2021.36.e286. PMID: 34664804; PMCID: PMC8524235.
- 40.Schneider J, Sottmann L, Greinacher A, Hagen M, Kasper HU, Kuhnen C, Schlepper S, Schmidt S, Schulz R, Thiele T, Thomas C, Schmeling A.
 Postmortem investigation of fatalities following vaccination with COVID-19 vaccines. Int J Legal Med. 2021 Nov;135(6):2335-2345. doi:

10.1007/s00414-021-02706-9. Epub 2021 Sep 30. PMID: 34591186; PMCID: PMC8482743.

- 41. Verma AK, Lavine KJ, Lin CY. Myocarditis after Covid-19 mRNA
 Vaccination. N Engl J Med. 2021 Sep 30;385(14):1332-1334. doi:
 10.1056/NEJMc2109975. Epub 2021 Aug 18. PMID: 34407340; PMCID:
 PMC8385564.
- 42. Wiedmann M, Skattør T, Stray-Pedersen A, Romundstad L, Antal EA, Marthinsen PB, Sørvoll IH, Leiknes Ernstsen S, Lund CG, Holme PA, Johansen TO, Brunborg C, Aamodt AH, Schultz NH, Skagen K, Skjelland M. Vaccine Induced Immune Thrombotic Thrombocytopenia Causing a Severe Form of Cerebral Venous Thrombosis With High Fatality Rate: A Case Series. Front Neurol. 2021 Jul 30;12:721146. doi:

10.3389/fneur.2021.721146. PMID: 34393988; PMCID: PMC8363077.

43. Pomara C, Sessa F, Ciaccio M, Dieli F, Esposito M, Giammanco GM, Garozzo SF, Giarratano A, Prati D, Rappa F, Salerno M, Tripodo C, Mannucci PM, Zamboni P. COVID-19 Vaccine and Death: Causality Algorithm According to the WHO Eligibility Diagnosis. Diagnostics (Basel). 2021 May 26;11(6):955. doi: 10.3390/diagnostics11060955. PMID: 34073536; PMCID: PMC8229116.

- 44. Althaus K, Möller P, Uzun G, Singh A, Beck A, Bettag M, Bösmüller H, Guthoff M, Dorn F, Petzold GC, Henkes H, Heyne N, Jumaa H, Kreiser K, Limpach C, Luz B, Maschke M, Müller JA, Münch J, Nagel S, Pötzsch B, Müller J, Schlegel C, Viardot A, Bäzner H, Wolf M, Pelzl L, Warm V, Willinek WA, Steiner J, Schneiderhan-Marra N, Vollherbst D, Sachs UJ, Fend F, Bakchoul T. Antibody-mediated procoagulant platelets in SARS-CoV-2-vaccination associated immune thrombotic thrombocytopenia. Haematologica. 2021 Aug 1;106(8):2170-2179. doi: 10.3324/haematol.2021.279000. PMID: 34011137; PMCID: PMC8327736.
- 45.Edler C, Klein A, Schröder AS, Sperhake JP, Ondruschka B. Deaths associated with newly launched SARS-CoV-2 vaccination (Comirnaty®). Leg Med (Tokyo). 2021 Jul;51:101895. doi: 10.1016/j.legalmed.2021.101895. Epub 2021 Apr 17. PMID: 33895650;

PMCID: PMC8052499.

46.Hansen T, Titze U, Kulamadayil-Heidenreich NSA, Glombitza S, Tebbe JJ, Röcken C, Schulz B, Weise M, Wilkens L. First case of postmortem study in a patient vaccinated against SARS-CoV-2. Int J Infect Dis. 2021 Jun;107:172-175. doi: 10.1016/j.ijid.2021.04.053. Epub 2021 Apr 16. PMID: 33872783; PMCID: PMC8051011.

- 47.Baronti A, Gentile F, Manetti AC, Scatena A, Pellegrini S, Pucci A, Franzini M, Castiglione V, Maiese A, Giannoni A, Pistello M, Emdin M, Aquaro GD, Di Paolo M. Myocardial Infarction Following COVID-19 Vaccine Administration: *Post Hoc, Ergo Propter Hoc*? Viruses. 2022 Jul 27;14(8):1644. doi: 10.3390/v14081644. PMID: 36016266; PMCID: PMC9413746.
- 48.Ittiwut C, Mahasirimongkol S, Srisont S, Ittiwut R, Chockjamsai M, Durongkadech P, Sawaengdee W, Khunphon A, Larpadisorn K, Wattanapokayakit S, Wetchaphanphesat S, Arunotong S, Srimahachota S, Pittayawonganon C, Thammawijaya P, Sutdan D, Doungngern P, Khongphatthanayothin A, Kerr SJ, Shotelersuk V. Genetic basis of sudden death after COVID-19 vaccination in Thailand. Heart Rhythm. 2022 Aug 5;19(11):1874–9. doi: 10.1016/j.hrthm.2022.07.019. Epub ahead of print. PMID: 35934244; PMCID: PMC9352648.
- 49.Greinacher A, Thiele T, Warkentin TE, Weisser K, Kyrle PA, Eichinger S. Thrombotic Thrombocytopenia after ChAdOx1 nCov-19 Vaccination. N Engl J Med. 2021 Jun 3;384(22):2092-2101. doi: 10.1056/NEJMoa2104840. Epub 2021 Apr 9. PMID: 33835769; PMCID: PMC8095372.
- **50.**Mauriello A, Scimeca M, Amelio I, Massoud R, Novelli A, Di Lorenzo F, Finocchiaro S, Cimino C, Telesca R, Chiocchi M, Sun Q, Wang Y, Shi Y,

Novelli G, Melino G. Thromboembolism after COVID-19 vaccine in patients with preexisting thrombocytopenia. Cell Death Dis. 2021 Aug 3;12(8):762. doi: 10.1038/s41419-021-04058-z. PMID: 34344867; PMCID: PMC8328816.

- 51.Bjørnstad-Tuveng TH, Rudjord A, Anker P. Fatal cerebral haemorrhage after COVID-19 vaccine. Tidsskr Nor Laegeforen. 2021 Apr 29;141. English, Norwegian. doi: 10.4045/tidsskr.21.0312. PMID: 33928772.
- 52.Scully M, Singh D, Lown R, Poles A, Solomon T, Levi M, Goldblatt D, Kotoucek P, Thomas W, Lester W. Pathologic Antibodies to Platelet Factor 4 after ChAdOx1 nCoV-19 Vaccination. N Engl J Med. 2021 Jun 10;384(23):2202-2211. doi: 10.1056/NEJMoa2105385. Epub 2021 Apr 16. PMID: 33861525; PMCID: PMC8112532.
- 53. Choi GJ, Baek SH, Kim J, Kim JH, Kwon GY, Kim DK, Jung YH, Kim S. Fatal Systemic Capillary Leak Syndrome after SARS-CoV-2Vaccination in Patient with Multiple Myeloma. Emerg Infect Dis. 2021 Nov;27(11):2973-2975. doi: 10.3201/eid2711.211723. Epub 2021 Aug 30. PMID: 34459725; PMCID: PMC8544977.
- 54.Schwab C, Domke LM, Hartmann L, Stenzinger A, Longerich T, Schirmacher P. Autopsy-based histopathological characterization of myocarditis after anti-SARS-CoV-2-vaccination. Clin Res Cardiol. 2023

Mar;112(3):431-440. doi: 10.1007/s00392-022-02129-5. Epub 2022 Nov 27. PMID: 36436002; PMCID: PMC9702955.

- 55.Hirschbühl K, Schaller T, Märkl B, Claus R, Sipos E, Rentschler L, Maccagno A, Grosser B, Kling E, Neidig M, Kröncke T, Spring O, Braun G, Bösmüller H, Seidl M, Esposito I, Pablik J, Hilsenbeck J, Boor P, Beer M, Dintner S, Wylezich C. High viral loads: what drives fatal cases of COVID-19 in vaccinees? - an autopsy study. Mod Pathol. 2022 Aug;35(8):1013-1021. doi: 10.1038/s41379-022-01069-9. Epub 2022 Apr 1. PMID: 35365771; PMCID: PMC8974809.
- 56.Hoshino N, Yanase M, Ichiyasu T, Kuwahara K, Kawai H, Muramatsu T, Ishii H, Tsukamoto T, Morimoto SI, Izawa H. An autopsy case report of fulminant myocarditis: Following mRNA COVID-19 vaccination. J Cardiol Cases. 2022 Dec;26(6):391-394. doi: 10.1016/j.jccase.2022.06.006. Epub 2022 Jul 4. PMID: 35812802; PMCID: PMC9250935.
- 57.Colombo D, Del Nonno F, Marchioni L, Lalle E, Gallì P, Vaia F, Falasca L.
 Autopsies Revealed Pathological Features of COVID-19 in Unvaccinated vs.
 Vaccinated Patients. Biomedicines. 2023 Feb 14;11(2):551. doi:
 10.3390/biomedicines11020551. PMID: 36831087; PMCID: PMC9953314.
- **58.**Mosna K, Vadkerti P, Papp L, Palkovic M, Janega P, Babal P. Guillain-Barré syndrome with lethal outcome following covid-19 vaccination - case

report supported by autopsy examination. The Open Neurology Journal. 2022 Mar 10;16(1). doi:10.2174/1874205x-v16-e2207270

- 59.Kaimori R, Nishida H, Uchida T, Tamura M, Kuroki K, Murata K, Hatakeyama K, Ikeda Y, Amemiya K, Nishizono A, Daa T, Mori S. Histopathologically TMA-like distribution of multiple organ thromboses following the initial dose of the BNT162b2 mRNA vaccine (Comirnaty, Pfizer/BioNTech): an autopsy case report. Thromb J. 2022 Oct 6;20(1):61. doi: 10.1186/s12959-022-00418-7. PMID: 36203145; PMCID: PMC9540301.
- 60. Wangu Z, Swartz H, Doherty M. Multisystem inflammatory syndrome in children (MIS-C) possibly secondary to COVID-19 mRNA vaccination.
 BMJ Case Rep. 2022 Mar 30;15(3):e247176. doi: 10.1136/bcr-2021-247176.
 PMID: 35354564; PMCID: PMC8968554.
- 61. Ehikhametalor K, Deans-Minott J, Duncan JP. Multisystem Inflammatory Syndrome in Adults (MIS-A) After COVID-19 Infection and Recent Vaccination with Recombinant Adenoviral Vector Encoding the Spike Protein Antigen of SARS-CoV-2 (ChAdOx1 nCoV-19, Vaxzevria). J Intensive Care Med. 2023 Feb;38(2):232-237. doi: 10.1177/08850666221121589. Epub 2022 Aug 17. PMID: 35979616; PMCID: PMC9389272.

- 62.Zidan A, Noureldin A, Kumar SA, Elsebaie A, Othman M. COVID-19
 Vaccine-Associated Immune Thrombosis and Thrombocytopenia (VITT):
 Diagnostic Discrepancies and Global Implications. Semin Thromb Hemost.
 2023 Feb;49(1):9-14. doi: 10.1055/s-0042-1759684. Epub 2023 Jan 5.
 PMID: 36603593.
- 63.Ifeanyi N, Chinenye N, Oladiran O, David E, Mmonu C, Ogbonna-Nwosu C. Isolated pulmonary embolism following COVID vaccination: 2 case reports and a review of post-acute pulmonary embolism complications and follow-up. J Community Hosp Intern Med Perspect. 2021 Nov 15;11(6):877-879. doi: 10.1080/20009666.2021.1990825. PMID: 34804412; PMCID: PMC8604520.
- 64. Abraham B, Mohammed Saeed H, Azeez Pasha SA. Acute respiratory distress syndrome secondary to COVID-19 mRNA vaccine administration in a pregnant woman: A case report. Qatar Med J. 2022 Aug 9;2022(3):40. doi: 10.5339/qmj.2022.40. PMID: 35974885; PMCID: PMC9372495.
- 65. Yoshifuji A, Ishioka K, Masuzawa Y, Suda S, Murata S, Uwamino Y, Fujino M, Miyahara H, Hasegawa N, Ryuzaki M, Hoshino H, Sekine K. COVID-19 vaccine induced interstitial lung disease. J Infect Chemother. 2022 Jan;28(1):95-98. doi: 10.1016/j.jiac.2021.09.010. Epub 2021 Sep 20. PMID: 34580010; PMCID: PMC8450284.

- 66. Chen Y, Xu Z, Wang P, Li XM, Shuai ZW, Ye DQ, Pan HF. New-onset autoimmune phenomena post-COVID-19 vaccination. Immunology. 2022 Apr;165(4):386-401. doi: 10.1111/imm.13443. Epub 2022 Jan 7. PMID: 34957554.
- 67.Hosseini R, Askari N. A review of neurological side effects of COVID-19 vaccination. Eur J Med Res. 2023 Feb 25;28(1):102. doi: 10.1186/s40001-023-00992-0. PMID: 36841774; PMCID: PMC9959958.
- 68. Ajmera K, Bansal R, Wilkinson H, Goyal L. Gastrointestinal Complications of COVID-19 Vaccines. Cureus. 2022 Apr 12;14(4):e24070. doi: 10.7759/cureus.24070. PMID: 35573556; PMCID: PMC9097558.
- 69.Pantazatos S, Seligmann H. COVID vaccination and age-stratified all-cause mortality risk. Research Gate 2021 Oct 26. Epub Oct 26. DOI: 10.13140/RG.2.2.28257.43366
- 70. Skidmore M. The role of social circle COVID-19 illness and vaccination experiences in COVID-19 vaccination decisions: an online survey of the United States population. BMC Infect Dis. 2023 Jan 24;23(1):51. doi: 10.1186/s12879-023-07998-3. Retraction in: BMC Infect Dis. 2023 Apr 11;23(1):223. PMID: 36694131; PMCID: PMC9872073.
- **71.**Aarstad, J.; Kvitastein, O.A. Is there a Link between the 2021 COVID-19 Vaccination Uptake in Europe and 2022 Excess All-Cause Mortality?.

Preprints.org 2023, 2023020350.

https://doi.org/10.20944/preprints202302.0350.v1

- 72.Beesoon S, Bakal JA, Youngson E, Williams KP, Berzins SA, Brindle ME, Joffe AM. Excess deaths during the COVID-19 pandemic in Alberta, Canada. IJID Reg. 2022 Dec;5:62-67. doi: 10.1016/j.ijregi.2022.08.011.
 Epub 2022 Aug 30. PMID: 36060856; PMCID: PMC9424127.
- 73.Todd M, Scheeres A. Excess Mortality From Non-COVID-19 Causes During the COVID-19 Pandemic in Philadelphia, Pennsylvania, 2020-2021. Am J Public Health. 2022 Dec;112(12):1800-1803. doi:

10.2105/AJPH.2022.307096. PMID: 36383938; PMCID: PMC9670212.

74.Karlinsky A, Kobak D. The World Mortality Dataset: Tracking excess mortality across countries during the COVID-19 pandemic. medRxiv [Preprint]. 2021 Jun 4:2021.01.27.21250604. doi: 10.1101/2021.01.27.21250604. Update in: Elife. 2021 Jun 30;10: PMID: 33532789; PMCID: PMC7852240.

75.COVID-19 Excess Mortality Collaborators. Estimating excess mortality due to the COVID-19 pandemic: a systematic analysis of COVID-19-related mortality, 2020-21. Lancet. 2022 Apr 16;399(10334):1513-1536. doi: 10.1016/S0140-6736(21)02796-3. Epub 2022 Mar 10. Erratum in: Lancet. 2022 Apr 16;399(10334):1468. PMID: 35279232; PMCID: PMC8912932.

- 76.Msemburi W, Karlinsky A, Knutson V, Aleshin-Guendel S, Chatterji S, Wakefield J. The WHO estimates of excess mortality associated with the COVID-19 pandemic. Nature. 2023 Jan;613(7942):130-137. doi: 10.1038/s41586-022-05522-2. Epub 2022 Dec 14. PMID: 36517599; PMCID: PMC9812776.
- 77.Shang W, Wang Y, Yuan J, Guo Z, Liu J, Liu M. Global Excess Mortality during COVID-19 Pandemic: A Systematic Review and Meta-Analysis. Vaccines (Basel). 2022 Oct 12;10(10):1702. doi: 10.3390/vaccines10101702. PMID: 36298567; PMCID: PMC9607451.

Figure Legends

Figure 1: Preferred Reporting Items for Systemic Reviews and Meta-Analyses (PRISMA) flow diagram detailing the study selection process.

Figure 2: Proportion of Cases by Affected Organ System

Figure 3: Number of Affected Organ Systems by Cases

Figure 4: Distribution of Time from Last Vaccine Administration to Death

Table Legends

Table 1: Characteristics of included studies on COVID-19 vaccination possibly causing death.

Supplemental Table 1: Detailed Case Information and Death Adjudications

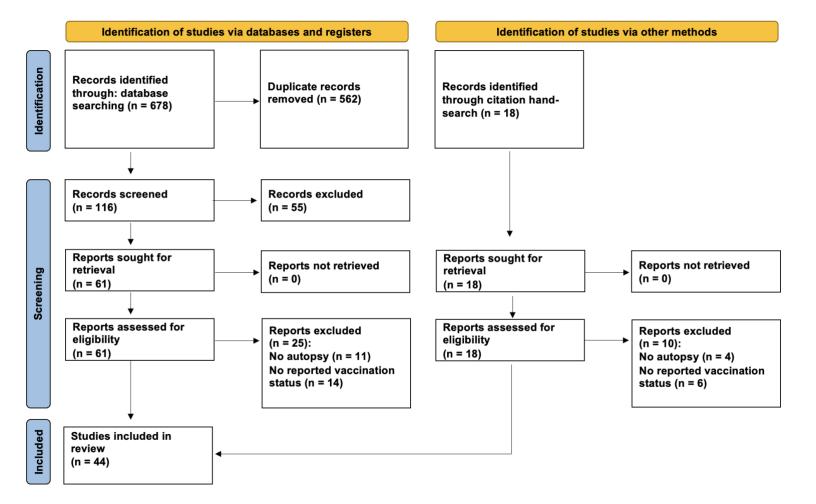
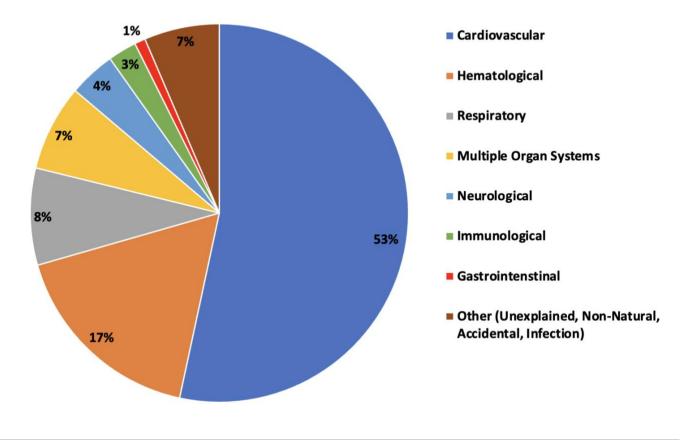
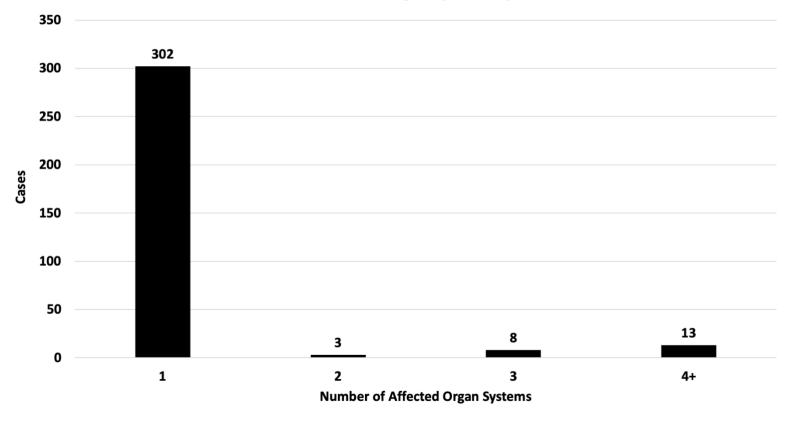




Figure 1.

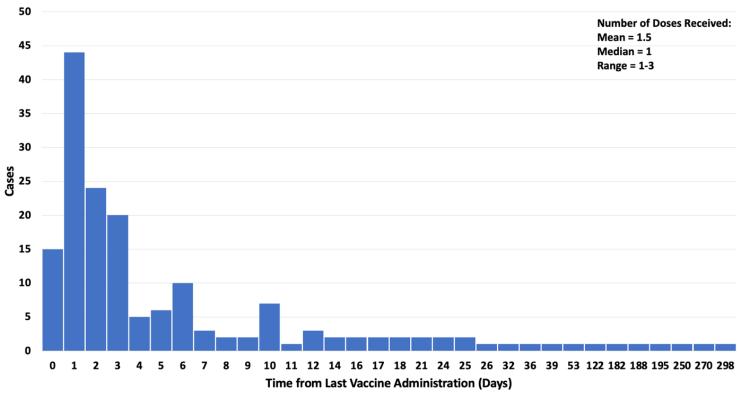

Proportion of Cases by Affected Organ System

Figure 2.

Number of Affected Organ Systems by Cases

Figure 3.

Time from Last Vaccine Administration to Death

Figure 4.

AUTHOR	YEA R	COUNTR Y	CASE S*	AGE	SEX	VACCIN E	DOS E**	DISEASE	ORGAN SYSTEM	PERIOD ***	PROCEDU RE
HOJBERG [<u>16</u>]	2023	USA	1			Moderna		Eosinophili a	Immunologic al	'recent'	Autopsy
NUSHIDA [<u>17]</u>	2023	Japan	1	14	F	Pfizer	3	MIS	MIS	2 days	Autopsy
JEON [<u>18</u>]	2023	Korea	1	19	Μ	Pfizer	2	Multiple sclerosis	Neurological	182 days	Autopsy
ESPOSITO [<u>19]</u>	2023	Italy	1	83	Μ	Pfizer	2	COVID-19	MIS		Autopsy
CHAVES [<u>20</u>]	2022	Columbia	121	84 (mean)	52% F	Sinovac, AZ, Pfizer	1-2	SCD, MI, PE	Cardiovascul ar, Hematologica l		Autopsy
MORZ [<u>21</u>]	2022	Germany	1	76	Μ	Pfizer	2	Encephaliti s, myocarditi s	MIS	21 days	Autopsy
ALUNNI [<u>22]</u>	2022	France	1	70	Μ	AZ	1	VITT	Hematologica l	25 days	Autopsy
TAKAHAS HI [<u>23</u>]	2022	Japan	1	'90s'	Μ	Pfizer	3	Pericarditis	Cardiovascul ar	14 days	Autopsy
MURATA [<u>24]</u>	2022	Japan	4	34 (mean)	Μ	Moderna , Pfizer	2	Cytokine Storm	Immunologic al	1-10 days	Autopsy
SATOMI [<u>25]</u>	2022	Japan	1	61	F	Pfizer	1	Myocarditi s	Cardiovascul ar	10 days	Autopsy

SUZUKI [<u>26]</u>	2021	Japan	54	68.1 (mean)	37% F	Pfizer, Moderna	1-2	Various	Various	<7 days	Autopsy
MELE [<u>27</u>]	2022	Italy	1	54	Μ	J&J	1	VITT	Hematologica l	~21 days	Autopsy
YOSHIMUR A [<u>28</u>]	2022	Japan	1	88	F	Moderna	2	VI-ARDS	Respiratory	18 days	Autopsy
RONCATI [<u>29]</u>	2022	Italy	3	72.3 (mean)	2 F	Pfizer	1-2	VITT	Hematologica l	18-122 days	Autopsy
KANG [<u>30</u>]	2022	Korea	1	48	F	AZ, Pfizer	2	Myocarditi s (required transplant, no death)	Cardiovascul ar	15 days	Necropsy (heart)
KAMURA [<u>31]</u>	2022	Japan	1	57	Μ	Moderna	1	Thrombosi s/rhabdom yolysis	MIS	53 days	Autopsy
ISHIOKA [<u>32</u>]	2022	Japan	1	67	Μ	Pfizer	1	Exacerbati on of UIP	Respiratory	3 days	Autopsy
GILL [<u>33</u>]	2022	USA	2	'teena ge'	Μ	Pfizer	2	Myocarditi s	Cardiovascul ar	3-4 days	Autopsy
POMARA [<u>34</u>]	2022	Italy	1	37	F	AZ	1	VITT	Hematologica l	24 days	Autopsy
YEO [<u>35</u>]	2022	Singapore	28	65.1 (mean)	17.9 % F	Pfizer, Moderna	1-2	Various	Various	<3 days	Autopsy
AMERATU NGA [<u>36</u>]	2022	New Zealand	1	57	F	Pfizer	1	Myocarditi s	Cardiovascul ar	3 days	Autopsy

GUNTHER [<u>37</u>]	2021	Germany	1	54	Μ	AZ	1	VITT	Hematologica l	~121 days	Autopsy
PERMEZEL [<u>38</u>]	2022	Australia	1	63	Μ	AZ	1	ADEM	Neurological	32 days	Autopsy
CHOI [<u>39</u>]	2021	Korea	1	22	Μ	Pfizer	1	Myocarditi s	Cardiovascul ar	5 days	Autopsy
SCHNEIDE R [<u>40]</u>	2021	Germany	18	62.6 (mean)	50% F	AZ, Pfizer, Moderna , J&J	1-2	Various	Various	1-14 days	Autopsy
VERMA [<u>41</u>]	2021	USA	1	42	Μ	Moderna	2	Myocarditi s	Cardiovascul ar	~14 days	Autopsy
WIEDMAN N [<u>42]</u>	2021	Norway	4	41.8 (mean)	F	AZ	1	VITT	Hematologica l	7-25 days	Autopsy
POMARA [<u>43]</u>	2021	Italy	2	43.5 (mean)	1 F	AZ		VITT	Hematologica l	16-24 days	Autopsy
ALTHAUS [<u>44]</u>	2021	Germany	2	36 (mean)	1 F	AZ	1	VITT	Hematologica l	16-17 days	Autopsy
EDLER [<u>45</u>]	2021	Germany	3	ʻelder ly'	1 F	Pfizer	1	COVID-19, MI, PE	Cardiovascul ar, Hematologica I, Respiratory	2-12 days	Autopsy
HANSEN [<u>46]</u>	2021	Germany	1	86	Μ	Pfizer	1	Renal/respi ratory failure	MIS	26 days	Autopsy

BARONTI [<u>47</u>]	2022	Italy	5	64 (mean)	1 F	Pfizer, Moderna	1-2	MI	Cardiovascul ar	<1 day – 21 days	Autopsy
ITTIWUT [<u>48</u>]	2022	Thailand	13	42.8 (mean)	23% F	AZ, Sinophar m, Sinovac, Pfizer, Moderna	1-3	Various	Various	1-7 days	Autopsy
GREINACH ER [<u>49</u>]	2021	Germany	1	49	F	AZ	1	VITT	Hematologica l	10 days	Autopsy
MAURIELL O [<u>50</u>]	2021	Italy	1	48	F	AZ	1	VITT	Hematologica l	39 days	Autopsy
BJØRNSTA D-TUVENG [<u>51</u>]	2021	Norway	1	'youn g'	F	AZ	1	VITT	Hematologica l	~10 days	Autopsy
SCULLY [<u>52</u>]	2021	U.K.	1	52	F	AZ	1	VITT	Hematologica l	~>10 days	Autopsy
CHOI [<u>53</u>]	2021	Korea	1	38	Μ	J&J	1	SCLS	Hematologica l	2 days	Autopsy
SCHWAB [<u>54</u>]	2023	Germany	5	57.6 (mean)	3 F	Pfizer, Moderna	1-2	Myocarditi s	Cardiovascul ar	<7 days	Autopsy
HIRSCHBU HL [<u>55]</u>	2022	Germany	29	32-97	45% F	Pfizer, AZ, Sinovac	1-2	COVID-19	Various	~1-307 days	Autopsy
HOSHINO [<u>56]</u>	2022	Japan	1	27	Μ	Moderna	1	Myocarditi s	Cardiovascul ar	36 days	Autopsy

COLOMBO [<u>57</u>]	2023	Italy	5	72 (mean)	2 F	Pfizer	2	Various	Respiratory, MIS	188-298 days	Autopsy
MOSNA [<u>58]</u>	2022	Slovakia	1	71	Μ	Pfizer	2	GBS	Neurological	10 days	Autopsy
KAIMORI [<u>59]</u>	2022	Japan	1	72	F	Pfizer	1	ТМА	Hematologica l	2 days	Autopsy

*Cases = Number of deaths examined post-mortem

****Dose = Cumulative number of vaccine doses received**

*******Period = Time (in days) from most recent vaccine administration to death

~ = Inferred Period (Estimated period using all available information, definitive period not given)

Table 1.

A REVIEW OF AUTOPSY FINDINGS IN DEATHS AFTER COVID-19

VACCINATION

Supplementary Appendix

Table of Contents

Table S1. Detailed Case Information and Death Adjudications
References

Author	Ca	Age	Sex	Vaccine	Dos	Disease	Organ	Period	Procedure	Post-Mortem Findings	Link to
	se	8*			e		System				Vaccine (Y/N)
Hojberg [<mark>16</mark>]	1			Moderna		Eosinophili a	Immunolo gical	"recent"	Autopsy	Eosinophilic enteritis, associated with ascites, and elsewhere, including the lungs and heart. Abundant eosinophils detected in tissues, including the small intestines, epicardium, and lungs.	Y, Y, Y: Y
Nushida [<mark>17</mark>]	1	14	F	Pfizer	3	MIS	MIS	2 days	Autopsy	Congestive edema of the lungs, T-cell lymphocytic and macrophage infiltration in the lungs, pericardium, and myocardium of the left atria and left ventricle, liver, kidneys, stomach, duodenum, bladder, and diaphragm.	Y, Y, Y: Y
Jeon [<u>18</u>]	1	19	Μ	Pfizer	2	Multiple sclerosis	Neurologic al	182 days	Autopsy	Multifocal gray-tan discoloration in the cerebrum. The lesions consisted of active and inactive demyelinated plaques in the perivenous area of the white matter. Perivascular lymphocytic infiltration and microglial cell proliferation were observed in both white matter and cortex.	Y, Y, Y: Y
Esposito [<u>19</u>]	1	83	Μ	Pfizer	2	COVID-19	MIS		Autopsy	Lungs showed massive interstitial pneumonia, areas of inflammation with interstitial lympho-plasma cell infiltrate, and interstitial edema. The liver showed granulocytes within the hepatic parenchyma. In the brain, perivasal edema and perineuronal edema was found. The heart showed myofiber breakup and colliquative myocytolysis.	Y, Y, Y: Y

			1		-					Τ	1
Chaves	12	84	52	Sinovac,	1 –	SCD, MI,	Cardiovas		Autopsy	SCD was the leading cause of death with	Y, Y, Y:
[<u>20</u>]	1	(me	%F	AZ,	2(7.	PE	cular,			69 cases (57.02%), followed by acute	Y (105
(individu		an)		Pfizer	63		Hematolog			myocardial infarction in 53 patients	CASES)
al case					%)		ical			(43.8%) and other cardiovascular diseases	N (16
data										(aortic dissection, aortic aneurysms,	CASES)
unavaila										arrhythmias) in 23 patients (19%). 45 of	
ble)										the SCD cases were secondary to acute	
										myocardial infarction and a further 18	
										cases secondary to other cardiovascular	
										diseases. In 6 cases of SCD no diagnostic	
										findings were found. Pulmonary embolism	
										(PE) was found in 25 cases (20.66%).	
										Other diagnoses included respiratory	
										failure not secondary to bacterial	
										pneumonia in 7 patients (5.78%),	
										metabolic conditions in 3 patients (2.47%),	
										bacterial pneumonia in 2 patients (1.65%),	
										neoplasia in 2 patients (1.65%), 1 case of	
										sepsis (0.82%) and one case of sudden	
										unexpected death in epilepsy (0.82%). 105	
										(86.8%) cases were cardiac/hematological	
										related.	
Morz	1	76	Μ	Pfizer	2	Encephaliti	MIS	21 days	Autopsy	Signs of aspiration pneumonia and	Y, Y, Y:
[21]						s,			-	systemic arteriosclerosis were evident.	Y
						myocarditis				Brain examination uncovered acute	-
						ing ocur areas				vasculitis (predominantly lymphocytic) as	
										well as multifocal necrotizing encephalitis	
										of unknown etiology with pronounced	
										inflammation including glial and	
										lymphocytic reaction. In the heart, signs of	
										chronic cardiomyopathy as well as mild	
										acute lympho-histiocytic myocarditis and	
										vasculitis were present. Only spike protein	
										vascunus were present. Omy spike protein	

	-						-			-	
										but no nucleocapsid protein could be detected within the foci of inflammation in both the brain and the heart. Also, mild acute splenitis, gastric mucosal bleeding, liver lipofuscinosis, and mild active nephritis were found.	
Alunni [<u>22</u>]	1	70	Μ	AZ	1	VITT	Hematolog ical	25 days	Autopsy	Venous hemorrhagic infarction with the presence of thrombi within dural venous sinuses, and extensive hemorrhagic necrosis of the central part of the adrenal glands. Antibodies against platelet factor 4 (PF4) were strongly positive in postmortem fluids.	Y, Y, Y: Y
Takahas hi [<u>23</u>]	1	"90 s"	Μ	Pfizer	3	Pericarditis	Cardiovas cular	14 days	Autopsy	Dissection of the ascending aorta and pericardial hemotamponade. The heart showed a white villous surface, and the pericardium was fibrously thick. Microscopic examination revealed pericarditis with predominantly macrophage and lymphocyte infiltration.	Y, Y, Y: Y
Murata [<u>24</u>]	1	30	М	Pfizer	2	Cytokine Storm	Immunolo gical	2 days	Autopsy	No information regarding COD detected in autopsy other than congestion of primary organs. Postmortem interval inferred from postmortem phenomena and coroner's rectal temperature measurements estimated high body temperatures for all cases at the time of death. RNA sequencing revealed that genes involved in neutrophil degranulation and cytokine signaling were upregulated.	Y, Y, Y: Y

	2	52	Μ	Pfizer	2	Cytokine Storm	Immunolo gical	3 days	Autopsy	Same as Case 1.	Y, Y, Y: Y
	3	23	M	Moderna	2	Cytokine Storm	Immunolo gical	10 days	Autopsy	Same as Case 1.	Y, Y, Y: Y
	4	31	M	Pfizer	2	Cytokine Storm	Immunolo gical	1 day	Autopsy	Same as Case 1.	Y, Y, Y: Y
Satomi [<u>25</u>]	1	61	F	Pfizer	1	Myocarditi s	Cardiovas cular	10 days	Autopsy	The heart showed moderate dilatation of both ventricles, and the myocardium showed an uneven color change and decreased elasticity. Histologically, severe myocarditis with extensive myocytolysis was observed. The myocarditis showed severe inflammatory cell infiltration with T-lymphocyte and macrophage predominance, and vast nuclear dust accompanying neutrophilic infiltration was observed. In the bone marrow and lymph nodes, hemophagocytosis was observed. SARS-CoV-2 nucleic acids were not detected using multivirus real-time PCR system.	Y, Y, Y: Y
Suzuki [<u>26</u>]	1	72	M	Pfizer	1	Adhesion ileus	MIS	3 days	Autopsy	Adhesion of the small intestine and enlargement of the duodenum and the small intestine, post sigmoid colectomy. Further, diabetic ketoacidosis, cardiomegaly, severe coronary sclerosis, and liver cirrhosis also detected.	N, N, N: N
	2	86	F	Pfizer	1	MI	Cardiovas cular	6 days	Autopsy	Cardiac tamponade due to a rupture of myocardial infarction in the posterior wall, severe coronary sclerosis with thrombus in the left circumflex branch,	Y, N, Y: Y

	-	-						1		1
									cardiomegaly, cavernous hemangioma in	
									the liver.	
3	86	F	Pfizer	1	Drowning	Other	1 day	Autopsy	Emphysema aquosum, watery gastric	N, N, N:
									content. Hypertensive and diabetic	Ν
									nephrosclerosis.	
4	91	Μ	Moderna	1	Ischemic	Cardiovas	6 days	Autopsy	Old myocardial infarction in the post	Y, N, Y:
					heart	cular			lateral wall, severe coronary artery	Y
					disease,				sclerosis, leukocyte and lymphocyte	
					myocarditis				infiltration in the left anterior wall,	
									diabetic nephropathy, aortic sclerosis.	
5	90	Μ			Ischemic	Cardiovas	3 days	Autopsy	Cardiomegaly with old infarction of the	Y, N, N:
					heart	cular			anteroseptal wall, severe coronary	Ν
					disease				sclerosis, elevation of NT-pro BNP in blood	
									(27400 pg/ml), aortic sclerosis, benign	
									nephrosclerosis.	
6	74	F	Pfizer	1	Drowning	Other	6 days	Autopsy	Emphysema aquosum, watery gastric	N, N, N:
									content, pleural effusion, coronary	Ν
									sclerosis, hypertensive and diabetic	
									nephrosclerosis, old lung tuberculosis.	
7	87	F	Pfizer	1	Drowning	Other	1 day	Autopsy	Emphysema aquosum, watery gastric	N, N, N:
									content, pleural effusion, benign	Ν
									nephrosclerosis.	
0	=0	1	DØ	-		TT ()	4.1			X7 X7 X7
8	79	Μ	Pfizer	1	Pulmonary	Hematolog	4 days	Autopsy	Thromboembolism in the bilateral	Y, Y, Y:
					artery	ical			pulmonary trunk, deep vein thrombosis of	Y
					thromboem				the left lower extremity (containing	
					bolism				organized thrombus), cardiomegaly,	
									coronary sclerosis, unruptured abdominal	
0	00	М	DC	1	X-lander C	Cantanairat	7 .1	A A	aortic aneurysm, benign nephrosclerosis.	NT NT NT
9	80	Μ	Pfizer	1	Volvulus of	Gastrointe	7 days	Autopsy	Pan-peritonitis due to a rupture of the	N, N, N:
					sigmoid	stinal			volvulus of the sigmoid colon, chronic	Ν
					colon				subdural hematoma, Alzheimer's disease.	

 10			DC		T (•	MIC	2.1			
10	77	F	Pfizer	2	Incarcerati on of inguinal hernia	MIS	3 days	Autopsy	Strangulation ileus due to an incarceration of inguinal hernia, aspiration of vomitus, chronic pyelonephritis, cardiomegaly, lacuna infarction.	N, N, N: N
11	81	Μ		1	Ischemic heart disease	Cardiovas cular	1 day	Autopsy	Severe coronary sclerosis, cardiomegaly with mild fibrotic scar, elevation of NT-pro BNP in blood (27400 pg/ml), aortic sclerosis.	Y, N, N: N
12	79	F	Pfizer	2	Ischemic heart disease	Cardiovas cular	1 day	Autopsy	Severe sclerosis in the left anterior descending coronary artery, mild amyloid disposition in the interstitial space of the cardiomyocytes.	Y, N, N: N
13	76	Μ	Pfizer	2	Drowning	Other	1 day	Autopsy	Emphysema aquosum, watery gastric content, pleural effusion, unruptured thoracic aortic aneurysm, benign nephrosclerosis, multiple renal cysts.	N, N. N: N
14	78	F	Pfizer	1	Ischemic colitis	MIS	6 days	Autopsy	Pan-peritonitis due to extensive necrosis of the small intestine, thrombus in the peripheral side of the superior mesenteric artery, coronary sclerosis, aortic sclerosis, fatty liver.	Y, Y, Y: Y
15	82	F	Pfizer	2	Ischemic heart disease	Cardiovas cular	1 day	Autopsy	Severe sclerosis with stent implantation in the right and left coronary arteries, multiple small fibrotic scars in the myocardium, elevation of NT-pro BNP in blood (9980 pg/ml), benign nephrosclerosis, aortic sclerosis.	Y, N, N: N
16	77	F	Pfizer		Malnutritio n	Other	6 days	Autopsy	Body mass index 13.2, elevation of acetone in the blood (15.9 µg/ml), chronic hepatitis, hepatoma, aortic sclerosis.	N, N, N: N

17	83	F	Pfizer	2	Aortic dissection	Cardiovas cular	1 day	Autopsy	Rupture of aortic dissection, hemothorax, cystic medial necrosis in the aorta, aortic	Y, Y, N: Y
18	67	F	Pfizer	2	Pyelonephr itis	Other	5 days	Autopsy	sclerosis.Swelling of the right kidney, neutrophilinfiltration in the tubule and theinterstitial space of the kidney,cardiomegaly, coronary sclerosis, end-stage kidney disease.	Y, N, N: N
19	85	M	Pfizer		Hemopneu mothorax	Respirator y	6 days	Autopsy	Hemothorax (right 350 ml, left 50 ml), multiple bullae in the apex, emphysema, coronary sclerosis, aortic sclerosis, benign nephrosclerosis.	Y, N, N: N
20	79	M	Pfizer		Gastric cancer	MIS	4 days	Autopsy	Carcinomatosis peritonitis due to gastric cancer in the cardia (sized 4 × 4 cm), pneumonia, old cerebral infarction, benign nephrosclerosis, aortic sclerosis.	N, N, N: N
21	77	Μ	Pfizer	1	Diabetic ketoacidosi s	Immunolo gical	1 day	Autopsy	Elevation of ketone in blood (3590 µmol/l), diabetic nephropathy, cardiomegaly, old cerebral infarction.	Y, N, N: N
22	87	F		1	Drowning	Other	2 days	Autopsy	Emphysema aquosum, microbubbles in the trachea, cardiomegaly, benign nephrosclerosis, fatty liver.	N, N, N: N
23	70	F	Pfizer	2	Sigmoid colon cancer	MIS	3 days	Autopsy	Sigmoid colon cancer (sized 4 × 3.2 cm), liver metastasis with extensive hemorrhage and necrosis, lung edema, pleural effusion.	N, N, N: N
24	83	F		2	Drowning	Other	2 days	Autopsy	Emphysema aquosum, watery gastric content, cardiomegaly, aortic sclerosis, benign nephrosclerosis.	N, N, N: N
25	82	Μ	Pfizer	2	Lung cancer	MIS	2 days	Autopsy	Hemothorax (right 2100 ml) due to lung cancer (S6, sized 6 × 6 cm), multiple metastasis in the lung and liver, cardiomegaly, benign nephrosclerosis.	N, N, N: N

	topsy Hypertrophy of the anterior mitral leaflet, Y, N, N:
failure cular	cardiomegaly, elevation of NT-pro BNP in N
	blood (6220 pg/ml), coronary sclerosis, old
	cerebral infarction.
2784FPfizer1MICardiovas2 daysAu	topsy Cardiac tamponade due to a rupture of Y, N, Y:
cular	myocardial infarction in the post lateral Y
	wall, aortic sclerosis.
2859M1MICardiovas6 daysAu	topsy Cardiac tamponade due to a rupture of Y, N, Y:
cular	myocardial infarction in the lateral wall, Y
	severe coronary sclerosis, cardiomegaly,
	aortic sclerosis.
	topsy Blood ethanol level (3.5 mg/ml), urine N, N, N:
intoxication	ethanol level (3.89 mg/ml), liver cirrhosis. N
3065MPfizerIschemicCardiovas0 daysAu	topsy Old myocardial infarction in the anterior Y, N, N:
heart cular	and lateral wall, severe sclerosis in the left N
disease	coronary artery, cardiomegaly, fatty liver,
	aortic sclerosis.
3166MPfizer2IschemicCardiovas3 daysAu	topsy Old myocardial infarction in the Y, N, Y:
heart cular	anteroseptal wall, severe coronary Y
disease	sclerosis, lung edema, tonsillar
	hypertrophy.
3269MUnknownOther1 dayAu	topsy Severe postmortem change of the whole Y, N, N:
	organ, malnutrition, emphysema, N
	coronary sclerosis
	topsy Significant neutrophil infiltration and Y, N, N:
pneumonia y	bacteria in the alveoli of bilateral lungs, N
	aspiration of vomitus, myotonic
	dystrophy, coronary sclerosis.
3451MPfizer2BacterialRespirator2 daysAu	topsy Lobar pneumonia in the middle lobe of the N, N, N:
pneumonia y	right lung, elevation of CRP in blood N
	(28.03 mg/dl), liver cirrhosis, malnutrition.

35	40	Μ	Moderna	2	Ischemic heart disease	Cardiovas cular	3 days	Autopsy	Severe coronary sclerosis, fatty liver.	Y, N, Y: Y
36	65	М		2	Gastric cancer	MIS	2 days	Autopsy	Gastric cancer (sized 12 × 10 cm), metastasis in multiple organs (heart, adrenal gland, bone marrow), old myocardial infarction, coronary sclerosis.	N, N, N: N
37	74	Μ	Pfizer	2	Ischemic heart disease	Cardiovas cular	1 day	Autopsy	Severe coronary sclerosis, lung edema and congestion, old renal infarction.	Y, N, N: N
38	88	F	Pfizer	2	Strangulati on ileus	MIS	2 days	Autopsy	Incarceration of hernia (greater omentum), necrosis of the jejunum, secondary pneumonia, senile amyloidosis, aortic sclerosis, benign nephrosclerosis, old lung tuberculosis.	N, N, N: N
39	55	Μ	Pfizer	1	Poisoning	Other	2 days	Autopsy	Methamphetamine (2.69 μg/ml), bromazepam (0.58 μg/ml) and myanserin hydrochloride (0.14 μg/ml) in blood, fatty liver.	N, N, N: N
40	24	M	Moderna	2	Myocarditi s	Cardiovas cular	3 days	Autopsy	Scattered necrosis and fibrosis of cardiomyocytes with a perivascular pattern of inflammatory cell infiltration (consisting of predominantly lymphocytes).	Y, Y, Y: Y
41	53	M	Pfizer	1	Ischemic heart disease	Cardiovas cular	0 days	Autopsy	Severe coronary sclerosis, myocardial infarction in the anteroseptal wall, fatty liver.	Y, N, N: N
42	59	М		2	Diabetic ketoacidosi s	Immunolo gical	6 days	Autopsy	Elevation of ketone in blood (13000 µmol/l), dehydration, diabetic nephropathy, fibrosis of the pancreas, old myocardial infarction, coronary sclerosis.	Y, N, N: N

43	47	Μ	Pfizer	1	Ischemic	Cardiovas	5 days	Autopsy	Severe coronary sclerosis, contraction	Y, N, Y:
					heart disease	cular			band in cardiomyocytes, fatty liver.	Y
44	84	Μ		2	Cor	Cardiovas	5 days	Autopsy	Hypertrophy of the right ventricle,	Y, N, N:
					pulmonale	cular	_		emphysema, elevation of NT-pro BNP in	Ν
					-				blood (57900 pg/ml), bronchitis, coronary	
									sclerosis, old cerebral hemorrhage.	
45	49	Μ		2	Pulmonary	Hematolog	5 days	Autopsy	Thromboembolism in the bilateral	Y, Y, Y:
					artery	ical	· ·		pulmonary trunk, deep vein thrombosis of	Y
					thromboem				bilateral lower extremities (containing	
					bolism				organized thrombus), fatty liver.	
46	67	F	Pfizer	2	Ischemic	Cardiovas	0 days	Autopsy	Severe coronary sclerosis, lung edema,	Y, N, N:
					heart	cular	-		benign nephrosclerosis, aortic sclerosis.	Ν
					disease					
47	56	Μ	Moderna	2	Ischemic	Cardiovas	2 days	Autopsy	Cardiomegaly with multiple fibrotic scars,	Y, N, Y:
					heart	cular			severe coronary sclerosis, lung edema and	Y
					disease				congestion, benign nephrosclerosis, fatty	
									liver.	
48	52	Μ		1	Cerebral	Neurologic	1 day	Autopsy	Transverse sinus thrombosis, massive	Y, Y, Y:
					hemorrhag	al			cerebral hemorrhage (sized 10 × 10 cm)	Y
					e				with ischemic lesion, gastromalacia.	
49	48	F	Moderna	1	Diabetic	Immunolo	3 days	Autopsy	Elevation of ketone (9820 µmol/l) and	Y, N, N:
					ketoacidosi	gical			HbA1c (10.3%) in blood, dehydration.	Ν
					S					
50	39	Μ	Pfizer	2	Unknown	Other	3 days	Autopsy	Lung edema, a slight lymphocyte and	Y, Y, Y:
									macrophage infiltration in the internal	Y
									space of cardiac muscle.	
51	52	Μ	Pfizer	2	Ischemic	Cardiovas	3 days	Autopsy	Severe coronary sclerosis, cardiomegaly,	Y, N, Y:
					heart	cular			lung edema, benign nephrosclerosis, fatty	Y
					disease				liver.	
52	56	Μ	Pfizer	2	Subarachn	Neurologic	2 days	Autopsy	Dissection of the left vertebral artery, lung	Y, Y, N:
					oid	al			edema, cardiomegaly.	Y

						hemorrhag e					
	53	49	M	Pfizer	2	Unknown	MIS	0 days	Autopsy	Hypoxic encephalopathy, severe coronary sclerosis, cardiomegaly, liver cirrhosis, pneumonia.	Y, N, N: N
	54	39	М	Moderna		Myocarditi s	Cardiovas cular	3 days	Autopsy	Scattered inflammatory cell infiltration (consisting of predominantly monocytes) in the interstitial space of cardiomyocytes/around the coronary arteries, interstitial edema, eosinophilic and wavy change of cardiomyocytes, Lung edema, coronary sclerosis.	
Mele [<u>27</u>]	1	54	M	J&J	1	VITT	Hematolog ical	~21 days	Autopsy	Skull dissection showed a marked and widespread congestion and cerebral edema. The vascular structures showed thrombotic-like material within the superior sagittal sinus as well as within the transverse sinus, the sigmoid sinuses and the large saphenous vein in the proximal tract of left thigh. Microscopic examination of the thrombotic-like material revealed consolidated agglomerations of platelets and red blood cells. Inside the large saphenous vein's thrombotic material was neocapillarization and moderate intra- lesional fibroblastic proliferation.	Y, Y, Y: Y
Yoshimu ra [<u>28</u>]	1	88	F	Moderna	2	VI-ARDS	Respirator y	18 days	Autopsy	Both lungs were edematous and heavy. Very early-phase diffuse alveolar damage in the whole lung without other lung diseases was found. PCR confirmed that SARS-CoV-2 was not present in the lung	Y, N, N: N

					-					-	
										and other organs. The lesions were entirely immunohistochemically negative for both the SARS-CoV-2 spike and N protein.	
Roncati [<u>29</u>]	1	81	F	Pfizer	1	VITT	Hematolog ical	18 days	Autopsy	Widespread thrombotic phenomena in the micro-/macrocirculation of both the lungs were found. Immunohistochemistry confirmed the presence of a large number of activated platelets inside the thrombi. Patient was negative for SARS-CoV-2 shortly before death.	Y, Y, Y: Y
	2	84	F	Pfizer	2	VITT	Hematolog ical	122 days	Autopsy	Chest X-ray showed bilateral pneumothorax, pneumomediastinum and massive subcutaneous thoraco-abdominal emphysema extended to the upper limbs and neck thrombotic phenomena inside the lung microcirculation was found. Patient was negative for SARS-CoV-2 shortly before death.	Y, Y, Y: Y
	3	52	Μ	Pfizer	1	VITT	Hematolog ical	17 days	Autopsy	Patient was negative of SARS-CoV-2. Autopsy revealed mural thrombosis of the right heart ventricle and of a subendocardial vessel.	Y, Y, Y: Y
Kang [<u>30</u>]	1	48	F	AZ then Pfizer	2	Myocarditi s (required transplant, no death)	Cardiovas cular	15 days	Necropsy (heart)	Heart transplant needed due to heart failure. Organ autopsy of the explanted heart revealed giant cell myocarditis: diffuse cardiomyocyte necrosis and mixed inflammation in the atria, ventricles, and interventricular septum. The mixed inflammatory infiltrations consisted of lymphocytes, macrophages, and eosinophils. Scattered multinucleated giant cells were detected.	Y, Y, Y: Y

		-			-						
Kamura [<u>31</u>]	1	57	Μ	Moderna	1	Thrombosis /rhabdomy olysis	MIS	53 days	Autopsy	Autopsy showed multiple microvascular arterial thrombosis, organ/muscle necrosis, and C3 deposition in the renal glomeruli were confirmed on autopsy, suggesting immune-mediated complement activation.	Y, Y, Y: Y
Ishioka [<u>32</u>]	1	67	Μ	Pfizer	1	Exacerbati on of UIP	Respirator y	3 days	Autopsy	SARS-CoV-2 antigen test and polymerase chain reaction were both negative. The lungs had subpleural dense fibrosis with alternating areas of normal lung. Scattered fibroblastic foci were also observed, which was suggestive of usual interstitial pneumonia. The lung pathology report revealed diffuse alveolar damage that was characterized by infiltration of inflammatory cells and hyaline membranes with protein-rich edema fluid.	N, N, N: N
Gill [<u>33</u>]	1	'Te ena ge'	Μ	Pfizer	2	Myocarditi s	Cardiovas cular	3 days	Autopsy	No molecular evidence of SARS-CoV-2 infection. Global myocardial injury with areas of coagulative myocytolysis and contractions bands, with a perivascular pattern of inflammation consisting of mainly neutrophils and histocytes, scant lymphocytes, and occasional eosinophils. No acute or organizing thrombi were detected. Pattern of injury is consistent with stress cardiomyopathy.	Y, Y, Y: Y
	2	'Te ena ge'	Μ	Pfizer	2	Myocarditi s	Cardiovas cular	4 days	Autopsy	No molecular evidence of SARS-CoV-2 infection. As with the previous case, global myocardial injury was found but with more widespread transmural ischemic	Y, Y, Y: Y

Pomara [<u>34</u>]	1	37	F	AZ	1	VITT	Hematolog ical	24 days	Autopsy	changes and more interstitialinflammation. Subepicardial distributionof injury was not seen. No acute ororganizing thrombi were detected.Autopsy revealed thrombosis of thecerebral venous district, of the upper andlower limbs. The organ samples werestudied through light microscope both inhematoxylin-eosin andimmunohistochemical examination andshowed a strong inflammatory response inall samples and at the site of thrombosis.	Y, Y, Y: Y
Yeo [<u>35</u>]	1	86	F	Pfizer	1	Spontaneou s acute right intracerebr al hemorrhag e	Neurologic al	2 days	Autopsy	In all 28 cases, anaphylactic reactions, myocarditis and pericarditis, and thrombotic complications were not detected by the examiners. All available information is given: Total Tryptase (ug/l): 5.3 IgE (IU/mL): n/a CRP (mg/L): 197Pneumonia with consolidation changes in the lungs was found.	Y, Y, Y: Y
	2	67	Μ	Pfizer	1	Sigmoid volvulus	Gastrointe stinal	2 days	Autopsy	Total Tryptase (ug/l): 4.4 IgE (IU/mL): n/a CRP (mg/L):28.8	N, N, N: N
	3	74	М	Pfizer	1	Coronary artery disease	Cardiovas cular	0 days	Autopsy	Total Tryptase (ug/l): 18.7 IgE (IU/mL): 28.8 CRP (mg/L): 1.9	Y, Y, Y: Y
	4	86	М	Pfizer	1	Bleeding duodenal ulcer	Gastrointe stinal	2 days	Autopsy	Total Tryptase (ug/l): 5.8 IgE (IU/mL): 129 CRP (mg/L): 18.4	Y, N, N: N

5	63	M	Pfizer	2	Ischemic heart disease	Cardiovas cular	1 day	Autopsy	Total Tryptase (ug/l): 20.2 IgE (IU/mL): 2529 CRP (mg/L): 1	Y, Y, Y: Y
6	67	Μ	Pfizer	2	Hypertensi ve and ischemic heart disease	Cardiovas cular	3 days	Autopsy	Total Tryptase (ug/l): 18.9 IgE (IU/mL): 23.9 CRP (mg/L): 3.9	Y, Y, Y: Y
7	76	M	Pfizer	2	Ischemic heart disease	Cardiovas cular	2 days	Autopsy	Total Tryptase (ug/l): 102IgE (IU/mL):27.5CRP (mg/L): 21.2Lung and splenic tissue were submittedfor further histological evaluation andstained with anti-mast cell tryptaseantibody. Very scattered mast cellsstaining positively for anti-mast celltryptase antibody were seen in the lungtissue and only focally present in thesplenic tissue.	Y, Y, Y: Y
8	91	Μ	Pfizer	2	Ruptured acute myocardial infarction	Cardiovas cular	1 day	Autopsy	Total Tryptase (ug/l): 6.1 IgE (IU/mL): 311 CRP (mg/L): 89.8	Y, N, Y: Y
9	76	F	Pfizer	2	Subarachn oid hemorrhag e due to ruptured berry aneurysm	Neurologic al	1 day	Autopsy	Total Tryptase (ug/l): 20.1 IgE (IU/mL): 62.9 CRP (mg/L): 7	Y, Y, Y: Y

10	80	Μ	Pfizer	1	Ischemic heart	Cardiovas cular	0 days	Autopsy	Total Tryptase (ug/l): 8.1 IgE (IU/mL): 4405	Y, Y, Y: Y
					disease	cular			CRP (mg/L): 1.7	1
11	86	Μ	Pfizer	2	Ischemic	Cardiovas	1 day	Autopsy	Total Tryptase (ug/l): 6.2	Y, N, Y:
					heart	cular			IgE (IU/mL): 1	Y
					disease				CRP (mg/L): 4.8	
12	94	F	Pfizer	2	Hypertensi	Cardiovas	1 day	Autopsy	Total Tryptase (ug/l): 14.9	Y, Y, Y:
					ve heart	cular			IgE (IU/mL): 113	Y
	_				disease				CRP (mg/L): 1	
13	69	Μ	Pfizer	2	Ischemic	Cardiovas	0 days	Autopsy	Total Tryptase (ug/l): 17.7	Y, Y, Y:
					heart	cular			IgE (IU/mL): 502	Y
					disease				CRP (mg/L): 0.3	
14	63	Μ	Pfizer	2	Ruptured	Cardiovas	0 days	Autopsy	Total Tryptase (ug/l): 9.2	Y, Y, N:
					ascending	cular			IgE (IU/mL): 245	Y
					aortic				CRP (mg/L): 0.6	
					dissection					
15	53	Μ	Pfizer	1	Acute right	Hematolog	1 day	Autopsy	Total Tryptase (ug/l): 7.4	Y, Y, Y:
					coronary	ical			IgE (IU/mL): n/a	Y
					thrombosis				CRP (mg/L): n/a	
									Acute coronary thrombus was found at	
									autopsy, which was confirmed	
									histologically with no evidence of	
									vasculitis or eosinophilic infiltration.	
16	69	Μ	Pfizer	2	Severe	MIS	0 days	Autopsy	Total Tryptase (ug/l): 4.8	Y, N, N:
					interstitial				IgE (IU/mL): 17.8	Ν
					lung				CRP (mg/L): 19	
					disease					
					with					
					coronary					
					artery					
					disease					

17	23	M	Pfizer	2	Severe obesity, with associated cardiomyo pathy, hypoventila tion syndrome and obstructive sleep apnea	Cardiovas cular	1 day	Autopsy	Total Tryptase (ug/l): >200 IgE (IU/mL): 594 CRP (mg/L): 16.8 The heart showed features consistent with obesity and hypertension-related changes and there was no eosinophilia detected in the organs on histological evaluation. An increased amount of mast cells staining positively for anti-mast cell tryptase antibody in the lung tissue was found.	Y, Y, Y: Y
18	65	М	Moderna	2	Head injury	Other	1 day	Autopsy	Total Tryptase (ug/l): 39.2 IgE (IU/mL): 173 CRP (mg/L): 28.1	N, N, N: N
19	56	M	Moderna	2	Cerebral infarction with hemorrhag e	Neurologic al	1 day	Autopsy	Total Tryptase (ug/l): >200 IgE (IU/mL): 35.3 CRP (mg/L): n/a An increased amount of mast cells staining positively for anti-mast cell tryptase antibody in the lung tissue was found.	Y, Y, Y: Y
20	52	M	Pfizer	1	Coronary artery disease	Cardiovas cular	1 day	Autopsy	Total Tryptase (ug/l): 28.8 IgE (IU/mL): 9.6 CRP (mg/L): 5.5	Y, Y, Y: Y
21	53	M	Moderna	2	Right coronary artery anomalous origin with atheroscler otic ostial stenosis	Cardiovas cular	2 days	Autopsy	Total Tryptase (ug/l): 9.1 IgE (IU/mL): 279 CRP (mg/L): 17.3	Y, Y, Y: Y

22	51	Μ	Moderna	2	Coronary artery disease	Cardiovas cular	3 days	Autopsy	Total Tryptase (ug/l): 20.4 IgE (IU/mL): 19.8 CRP (mg/L): 5.9	Y, Y, Y: Y
23	53	F	Pfizer	2	Coronary atheroscler osis	Cardiovas cular	1 day	Autopsy	Total Tryptase (ug/l): 8.4 IgE (IU/mL): 42.5 CRP (mg/L): 10.1	Y, N, Y: Y
24	33	M	Moderna	2	Multi organ failure following cardiac arrest due to right ventricular dysplasia	MIS	1 day	Autopsy	Total Tryptase (ug/l): 10.3 IgE (IU/mL): 243 CRP (mg/L): 155	Y, Y, Y: Y
25	39	M	Pfizer	1	Ischemic heart disease	Cardiovas cular	0 days	Autopsy	Total Tryptase (ug/l): 43.4IgE (IU/mL): 513CRP (mg/L): 2.4Lung and splenic tissue were submittedfor further histological evaluation andstained with anti-mast cell tryptaseantibody. Very scattered mast cellsstaining positively for anti-mast celltryptase antibody were seen in the lungtissue and only focally present in thesplenic tissue.	Y, Y, Y: Y
26	72	F	Pfizer	1	Ischemic heart disease	Cardiovas cular	2 days	Autopsy	Total Tryptase (ug/l): 44.5 IgE (IU/mL): 6.3 CRP (mg/L): 0.5	Y, Y, Y: Y

										Lung and splenic tissue were submitted for further histological evaluation and stained with anti-mast cell tryptase antibody. Very scattered mast cells staining positively for anti-mast cell tryptase antibody were seen in the lung tissue and only focally present in the splenic tissue.	
	27	60	M	Pfizer	1	Ischemic heart disease	Cardiovas cular	2 days	Autopsy	Total Tryptase (ug/l): 9.7 IgE (IU/mL): 24 CRP (mg/L): 2.3	Y, N, Y: Y
	28	67	М	Pfizer	2	Head injury	Other	1 day	Autopsy	Total Tryptase (ug/l): 52 IgE (IU/mL): 59.3 CRP (mg/L): 3.2 Lung and splenic tissue were submitted for further histological evaluation and stained with anti-mast cell tryptase antibody. Very scattered mast cells staining positively for anti-mast cell tryptase antibody were seen in the lung tissue and only focally present in the splenic tissue.	Y, Y, Y: Y
Ameratu nga [<u>36</u>]	1	57	F	Pfizer	1	Myocarditi s	Cardiovas cular	3 days	Autopsy	Left pleural mass originating from the mediastinum was found. Multifocal inflammatory cell infiltration in the myocardium and areas of eosinophil-rich inflammatory aggregates with myocyte necrosis were found. An abundant eosinophilic infiltrate with myocyte	Y, Y, Y: Y

I				-		r				1	
										necrosis was observed. Antibodies to	
										SARS-CoV-2 were not detected.	
Gunther	1	54	Μ	AZ	1	VITT	Hematolog	~121	Autopsy	A residual thrombus in the left sinus	Y, Y, Y:
<u>37</u>							ical	days		transversus without evidence for other	Y
										thromboembolic pathology in the brain or	
										other solid organs was found. The brain	
										showed signs of severe edema and several	
										hemorrhages were detectable mostly in the	
										left hemisphere. Microscopic analysis	
										revealed large hemorrhages, as well as	
										small perivascular hemorrhages and	
										extensive neuronal death together with	
										brain edema. Also, a florid	
										bronchopneumonia and a small liver	
										hemangioma were diagnosed.	
Permezel	1	63	Μ	AZ	1	ADEM	Neurologic	32 days	Autopsy	Serial coronal sections of the brain showed	N, Y, Y:
[<u>38</u>]							al			multiple areas of ill-defined demyelination	Y
										in the white matter of the left superior	
										frontal gyrus, the right cingulate gyrus	
										extending into the corpus callosum, and in	
										the left and right parietal regions.	
										Histological examination confirmed the	
										presence of large geographic areas of	
										acute demyelination, focally in a	
										perivenular distribution. The foci were	
										characterized by loss of myelin. The	
										lesions showed reactive astrocytes,	
										microglia, and foamy macrophages. No	
										evidence of meningitis, vasculitis or	
										encephalitis was found. No virus was	
	4			DC	4				A <i>i</i>	found in the brain.	X / X / X /
Choi	I	22	Μ	Pfizer	1	Myocarditi	Cardiovas	5 days	Autopsy	Histological examination of the heart	Y, Y, Y:
[<u>39</u>]						S	cular			showed isolated atrial myocarditis, with	Y

										neutrophil and histiocyte predominance. Immunohistochemical C4d staining showed scattered single-cell necrosis of myocytes which was not accompanied by inflammatory infiltrates. Extensive contraction band necrosis was seen in the atria and ventricles. There was no evidence of microthrombosis or infection in the heart and other organs.	
Schneide r [<u>40</u>]	1	82	M	Moderna	1	Most likely severe pre- existing cardiac changes with infarction scars	Cardiovas cular	1 day	Autopsy	Severe coronary sclerosis, massive cardiac hypertrophy, extensive myocardial infarction scars, anaphylaxis diagnostics negative.	Y, N, N: N
	2	91	F	Moderna	1	Most likely severe pre- existing cardiac changes with infarction scars	Cardiovas cular	1 day	Autopsy	Severe coronary sclerosis, massive cardiac hypertrophy, myocardial infarction scars, anaphylaxis diagnostics negative.	Y, N, N: N
	3	32	F	AZ	1	Massive cerebral hemorrhag e	Neurologic al	12 days	Autopsy	Massive cerebral hemorrhage, anti-PF4 heparin antibody tests: positive, HIPA- Test: positive, PIPA-Test: positive.	Y, Y, Y: Y
	4	34	F	AZ	1	Recurrent myocardial infarction	Cardiovas cular	1 day	Autopsy	Obesity, massive cardiac hypertrophy, myocardial infarction scars, fresh	Y, N, Y: Y

5	48	F	AZ	in the presence of massive cardiac hypertrop y 1 Bleeding from ruptured aorta		10 days	Autopsy	myocardial infarction, anaphylaxis diagnostics negative. Aortic dissection with rupture, high blood loss.	Y, Y, Y: Y
6	65	М	Pfizer	1 Myocardit s in the presence of severe pre existing cardiac changes	cular f	1 day	Autopsy	Severe coronary sclerosis, massive cardiac hypertrophy, myocardial infarction scars, myocarditis, anaphylaxis diagnostics negative.	Y, Y, Y: Y
7	71	M	Pfizer	1 Most likely severe pre existing cardiac changes with infarction scars		1 day	Autopsy	Massive cardiac hypertrophy, coronary sclerosis, anaphylaxis diagnostics negative.	Y, N, Y: Y
8	57	F	Moderna	2 Hyperglyc mic coma	e MIS	6 days	Autopsy	Severe coronary sclerosis, fatty liver, high levels of glucose and lactate in CSF and aqueous humor exceeding the cumulative levels of Traub.	Y, Y, Y: Y
9	63	M	AZ	1 Most likel severe pre existing		14 days	Autopsy	Severe coronary sclerosis, cardiac hypertrophy, myocardial infarction scars, liver cirrhosis.	Y, N, Y: Y

					cardiac changes					
10	61	M	AZ	1	Most likely severe pre- existing cardiac changes with infarction scars	Cardiovas cular	1 day	Autopsy	Severe coronary sclerosis, massive cardiac hypertrophy, anaphylaxis diagnostics negative.	Y, N, Y: Y
11	71	М	AZ		Pulmonary embolism in the presence of DVT	Hematolog ical	10 days	Autopsy	DVT, pulmonary embolism, severe coronary sclerosis, massive cardiac hypertrophy, myocardial infarction scars, VITT-diagnostics negative.	Y, Y, Y: Y
12	38	F	AZ	2	Hypoxic brain damage following an anaphylacti c reaction to anesthetics	MIS	8 days	Autopsy	Multiple fresh thrombi, including in the cerebral venous sinuses, cardiac hypertrophy, fresh myocardial infarction, hypoxic brain damage, anti-PF4 heparin antibody tests: positive, HIPA-Test: positive, PIPA-Test: positive.	Y, Y, Y: Y
13	72	F	Pfizer	1	Massive cerebral hemorrhag e	Neurologic al	12 days	Autopsy	Massive cerebral hemorrhage, coronary sclerosis, cardiac hypertrophy, VITT diagnostics negative.	Y, Y, Y: Y
14	65	F	AZ	1	CVT and cerebral hemorrhag e with hypoxic	Neurologic al	10 days	Autopsy	Signs of a bleeding diathesis, cerebral hemorrhages, CVT, mild coronary sclerosis, anti-PF4 heparin antibody tests: positive, HIPA-Test: positive, PIPA-Test: positive.	Y, Y, Y: Y

	r –			<u> </u>	r	<u> </u>					
						brain damage					
	15	79	М	Pfizer	2	Pulmonary embolism in the presence of DVT	Hematolog ical	6 days	Autopsy	DVT, massive pulmonary embolism, coronary sclerosis, pericarditis, chronic pulmonary emphysema, VITT diagnostics negative.	Y, Y, Y: Y
	16	57	M	AZ		Recurrent myocardial infarction	Cardiovas cular	2 days	Autopsy	Severe coronary sclerosis, massive cardiac hypertrophy, extensive myocardial infarction scars, fresh myocardial infarction.	Y, Y, Y: Y
	17	72	F	Pfizer	2	Coronary thrombosis with fresh myocardial infarction	Cardiovas cular	0 days	Autopsy	Severe coronary sclerosis with coronary thrombosis, myocardial infarction scars, fresh myocardial infarction, anaphylaxis diagnostics negative.	Y, Y, Y: Y
	18	69	Μ	J&J	1	Coronary thrombosis with fresh myocardial infarction	Cardiovas cular	9 days	Autopsy	CVT, severe coronary sclerosis with coronary thrombosis, massive cardiac hypertrophy, fresh myocardial infarction, anti-PF4 heparin antibody tests: positive, HIPA-Test: positive, PIPA-Test: positive.	Y, Y, Y: Y
Verma [<u>41</u>]	1	42	M	Moderna	2	Myocarditi s	Cardiovas cular	~14 days	Autopsy	Autopsy revealed biventricular myocarditis. An inflammatory infiltrate admixed with macrophages, T-cells, eosinophils, and B cells was also observed.	Y, Y, Y: Y
Wiedma nn [<u>42</u>]	1	34	F	AZ	1	VITT	Hematolog ical	8 days	Autopsy	Autopsy showed an edematous brain with sparse subarachnoid hemorrhage and a large hemorrhagic infarction in the right hemisphere. Thrombi were present in both transverse sinuses. Scattered petechial and flame-shaped hemorrhages were observed on the skin, peritoneal membranes, and mucosal surfaces.	Y, Y, Y: Y

T	•	12	T	A 77			TT 4 1	25.1			X7 X7 X7
	2	42	F	AZ	1	VITT	Hematolog ical	25 days	Autopsy	At autopsy, a red-white clot was confirmed present in the left transverse and sigmoid sinus, as well as remnants of white clots attached to the endothelium in the sagittal sinus. Massive hemorrhagic infarction was present in the left hemisphere. In the lungs, peripheral areas with infarction were demonstrated. Microscopic examination confirmed multiple arteriolar thrombi in organization. In addition, small venules with intraluminal fibrin clots were present in several lung lobes and in the myocardium.	Y, Y, Y: Y
	3	37	F	AZ	1	VITT	Hematolog ical	11 days	Autopsy	Examination revealed a large hemorrhagic infarction in the left cerebral hemisphere, extensive hemorrhagic changes in the cerebellum, as well as focal white substance hemorrhages in the cerebral hemispheres and in the brainstem. Thrombi were present in the left transverse and sigmoid sinuses. Scattered small hemorrhages were observed on the skin and peritoneal membranes.	Y, Y, Y: Y
	4	54	F	AZ	1	VITT	Hematolog ical	9 days	Autopsy	Examination demonstrated a white clot in the posterior sagittal sinus and both transverse sinuses. Massive hemorrhagic venous infarction was confirmed in the right parietal lobe and bilateral hemorrhagic infarctions in multiple cortical areas. There were multiple extra- cerebral manifestations of coagulation disturbance, with leech-like white thrombi	Y, Y, Y: Y

/	·	·		T	·	T	T		1		T1
										in the inferior vena cava, left subclavian trunk, right inter-atrial septum, and both portal and hepatic veins. Microscopically, these extra-cerebral thrombi were rich in platelets, fibrin, and leukocytes with abundance of monocytes, and were attached to the endothelium, but without signs of organization. In the spleen, subcapsular hemorrhages were present as well as multiple intralobular arterioles with fibrinoid necrosis.	
Pomara [<u>43</u>]	1	50	Μ	AZ	1	VITT	Hematolog ical	16 days	Autopsy	Portal vein thrombosis with smaller thrombi in the splenic and upper mesenteric veins was found. Intracranial hemorrhage in the subarachnoid region was detected. The microscopic examination revealed numerous vascular thrombi and intense hemorrhagic phenomena localized in the meningeal space and extravasated in the brain tissue.	Y, Y, Y: Y
	2	37	F	AZ	1	VITT	Hematolog ical	24 days	Autopsy	Occlusive thrombus in the superior sagittal sinus and a very large hemorrhage in the frontal cerebral lobe was found. Moreover, in the axillary region of the left arm, a thrombus was detected. The microscopic examination revealed numerous vascular thrombi and intense hemorrhagic phenomena localized in the meningeal space and extravasated in the brain tissue.	Y, Y, Y: Y
Althaus [<u>44</u>]	1	48	F	AZ	1	VITT	Hematolog ical	16 days	Autopsy	Autopsy showed complete thrombotic obstruction of the straight, sagittal, and transversal cerebral sinuses, subarachnoid	Y, Y, Y: Y

l											
	2	24	M	AZ	1	VITT	Hematolog ical	17 days	Autopsy	hemorrhage, cerebral edema and bilateral pulmonary embolism in mid-sized arteries and obstruction of glomerular arterioles and capillaries by hyaline microthrombi containing fibrin and platelets. Autopsy showed massive cerebral hemorrhage and cerebral edema, bilateral pulmonary thromboembolism, and obstruction of glomeruli by hyaline microthrombi.	Y, Y, Y: Y
Edler [<u>45</u>]	1	ʻeld erly ,	F	Pfizer	1	Pulmonary artery embolism	Hematolog ical	5 days	Autopsy	Autopsy revealed pulmonary artery embolism with infarction of the right lower lobe of the lung with deep leg vein thromboses on both sides. On the left upper arm, an injection site was found over the deltoid muscle. The axillary lymph nodes appeared inconspicuous macroscopically. A postmortem nasopharyngeal swab for SARS-CoV-2 RNA was negative.	Y, Y, Y: Y
	2	ʻeld erly ,	М	Pfizer	1	COVID-19 Pneumonia	Respirator y	12 days	Autopsy	The autopsy revealed chronic and acute pancreatitis. Pneumonia was confirmed as the cause of death. Histologically, the markedly congested lungs showed alveoli filled with activated type II pneumocytes, fibroblasts, and partially lined with hyaline membranes. Giant cells and squamous metaplasia were present in some areas. The medium-sized arteries showed predominantly lymphocellular infiltrates in the outer wall layers. Microthromboses were found in small arterioles. Shortly before death, the	Y, Y, Y: Y

										patient was PCR positive for SARS-CoV-2 RNA.	
	3	ʻeld erly ,	М	Pfizer	1	MI	Cardiovas cular	2 days	Autopsy	From the autopsy, organ pathologies typical of old age were found in the form of signs of chronic obstructive pulmonary disease (COPD) and chronic renal dysfunction. The cause of death was a recurrent myocardial infarction with severe coronary heart disease and severe general arteriosclerosis. The lungs showed, besides advanced organized ones, a fresh, non-fulminant pulmonary artery thromboembolism in peripheral segments. Signs of an acute inflammatory event or a systemic abnormality (of the type of a vaccination complication) could not be verified; individual axillary lymph nodes were swollen near the injection site	Y, Y, Y: Y
Hansen [<u>46</u>]	1	86	М	Pfizer	1	Renal/respi ratory failure	MIS	26 days	Autopsy	Autopsy revealed acute bilateral bronchopneumonia with abscesses, sometimes being surrounded by bacterial cocci. There were no findings of commonly described manifestations of COVID-19- associated pneumonitis. In the heart, we found biventricular hypertrophy (weight 580 g) and histologically, we diagnosed ischemic cardiomyopathy. We detected amyloidosis of the transthyretin type in the heart and to a lesser extent in the lungs. The kidneys revealed both chronic damage with arteriolosclerosis and interstitial fibrosis, and acute renal failure with hydropic tubular degeneration. The	N, Y, Y: Y

										examination of the brain revealed a left parietal pseudocystic tissue necrosis, which was diagnosed as an old infarction area. SARS-CoV-2 RNA was detected in nearly all organs examined except for the liver and the olfactory bulb. Patient tested positive for COVID-19 2 days before death, with no clinical symptoms typically ascribed to COVID-19.	
Baronti [<u>47</u>]	1	69	Μ	Pfizer	1	MI	Cardiovas cular	2 days	Autopsy	Hemopericardium, heart laceration on the posterior wall of the left ventricle, pre- existing critical three-vessel atherosclerotic disease, and coronary thrombosis were detected. Coronary thrombosis of right coronary artery with significant stenosis. MI at the rupture site was seen.	Y, N, Y: Y
	2	58	Μ	Pfizer	2	MI	Cardiovas cular	0 days	Autopsy	Pre-existing three-vessel atherosclerotic disease, coronary thrombosis, and hypoplastic right coronary artery were found. Coronary thrombosis of left anterior descending artery was seen. IHC diagnostic of MI. PM-CMR indicated ischemic damage.	Y, Y, Y: Y
	3	76	Μ	Pfizer	1	MI	Cardiovas cular	21 days	Autopsy	Hemopericardium, heart laceration posterior wall of the left ventricle, and pre-existing three-vessel atherosclerotic disease was found. MI at the rupture site was seen.	Y, Y, Y: Y
	4	68	Μ	Pfizer	2	MI	Cardiovas cular	3 days	Autopsy	Pre-existing three-vessel atherosclerotic disease and coronary thrombosis were detected. Coronary thrombosis of left anterior descending artery was seen. IHC	Y, Y, Y: Y

A											
										diagnostic of MI. PM-CMR indicated ischemic damage.	
	5	50	F	Moderna	1	MI	Cardiovas cular	0 days	Autopsy	Pre-existing three-vessel atherosclerotic disease and coronary thrombosis were found. Coronary thrombosis of left anterior descending artery detected. IHC diagnostic of MI. PM-CMR indicated ischemic damage.	Y, Y, Y: Y
Ittiwut [<u>48</u>]	1	23	Μ	Sinovac then AZ	2	Unexplaine d	Other	1 day	Autopsy	'Unexplained': Patient had no underlying conditions, reported having a fever, headache, and fatigue before death.	N, Y, Y: Y
	2	33	М	Sinovac then AZ	2	Unexplaine d	Other	1 day	Autopsy	'Unexplained': Patient had schizophrenia and took clonazepam, diazepam, and fluoxetine.	N, Y, Y: Y
	3	43	М	2 Sinovac, then Pfizer	3	Dilated cardiomyo pathy (DCM)	Cardiovas cular	1 day	Autopsy	Autopsy found DCM in the heart. Patient reported fever and myalgia before death and had asthma and gout.	Y, Y, Y: Y
	4	46	M	Sinovac	1	Unexplaine d	Other	3 days	Autopsy	'Unexplained': Patient had hyperthyroidism.	N, Y, Y: Y
	5	28	F	Sinovac	1	Ventricular dysplasia	Cardiovas cular	7 days	Autopsy	Autopsy indicated arrhythmogenic right ventricular dysplasia.	Y, Y, Y: Y
	6	35	M	Sinophar m	1	Unexplaine d	Other	1 day	Autopsy	'Unexplained': Patient complained of fever and knee pain before death.	N, Y, Y: Y
	7	36	M	Sinovac then AZ	2	Unexplaine d	Other	1 day	Autopsy	'Unexplained': Patient had alcoholic hepatitis.	N, Y, Y: Y
	8	38	Μ	Sinophar m	2	Coronary atheroscler osis	Cardiovas cular	1 day	Autopsy	Autopsy indicated coronary atherosclerosis.	Y, Y, Y: Y
	9	72	Μ	AZ	1	Coronary atheroscler osis	Cardiovas cular	1 day	Autopsy	Autopsy indicated coronary atherosclerosis. Patient complained of chest pain before death.	Y, Y, Y: Y

	10	53	F	AZ	1	Thalassemi a with liver cirrhosis	Hematolog ical	1 day	Autopsy	Autopsy found thalassemia with liver cirrhosis. Patient had Beta thalassemia.	N, Y, Y: Y
	11	59	F	AZ	1	Coronary atheroscler osis	Cardiovas cular	1 day	Autopsy	Autopsy indicated coronary atherosclerosis.	Y, Y, Y: Y
	12	34	Μ	AZ	1	Unexplaine d	Other	1 day	Autopsy	'Unexplained'	N, Y, Y: Y
	13	56	M	Moderna	1	Coronary atheroscler osis	Cardiovas cular	4 days	Autopsy	Autopsy indicated coronary atherosclerosis.	Y, Y, Y: Y
Greinac her [<u>49</u>]	1	49	F	AZ	1	VITT	Hematolog ical	10 days	Autopsy	Autopsy revealed cerebral venous thrombosis. Before death, portal-vein thrombosis including the splenic and upper mesenteric veins was detected; in addition, small thrombi were visualized in the infrarenal aorta and both iliac arteries.	Y, Y, Y: Y
Mauriell o [<u>50</u>]	1	48	F	AZ	1	VITT	Hematolog ical	39 days	Autopsy	Autopsy examination revealed a massive cerebral hemorrhage complicated by a purulent abscess involving the right fronto-temporo-parietal lobes, the nucleus of the right base, with midline shift and wedging of the cerebellar tonsils and an internal and external haemocephalus. Bilateral confluent foci of bronchopneumonia associated to a right apical pulmonary infarction of both lungs were also observed. Postmortem analysis of bone marrow, including hematoxylin and eosin stain, immunohistochemistry, and transmission electron microscopy (TEM), showed focal megakaryocyte	Y, Y, Y: Y

										hypomplasia associated with momphological	
										hyperplasia associated with morphological dysplastic changes.	
Bjørnsta	1	"yo	F	AZ	1	VITT	Hematolog	~10 days	Autopsy	Postmortem examination showed	Y, Y, Y:
d-	1	ung	T		1	***	ical	-10 days	Autopsy	antibodies to PF4, and fresh small thrombi	Y 1, 1, 1.
Tuveng		,					icai			were found in the transverse sinus, frontal	1
[51]										lobe and pulmonary artery.	
Scully	1	52	F	AZ	1	VITT	Hematolog	~>10	Autopsy	Postmortem examination found	Y, Y, Y:
[<u>52</u>]	•	52	•		1	****	ical	days	rutopsy	thrombosis in the lungs and intestine,	Y, 1, 1.
							icai	uays		CVT, ICH.	1
Choi	1	38	Μ	J&J	1	SCLS	Hematolog	2 days	Autopsy	Autopsy results showed no evidence of	Y, Y, Y:
[<u>53</u>]							ical	·	1.2	acute infection or cardiovascular disease	Y
										in the internal organs. We identified	
										pulmonary edema, pleural effusion, and	
										pericardial effusion. Although pulmonary	
										edema is atypical in acute SCLS attacks	
										(leak phase), prolonged cardiopulmonary	
										resuscitation and fluid administration	
										might have affected the autopsy findings.	
										Histopathologic findings in both kidneys	
										suggested autolysis or acute tubular	
										necrosis.	
Schwab	1	46	Μ	Pfizer	1	Myocarditi	Cardiovas	0 days	Autopsy	Histological examination showed	Y, Y, Y:
[<u>54</u>]						S	cular			inflammatory infiltration of the	Y
										myocardium. The infiltrate was focal and	
										interstitial. It was predominantly detected	
										in sections taken from the right	
										ventricular wall and interventricular	
										septum. The histological and	
										immunohistochemical characterization	
										revealed that the inflammatory infiltrate	
										was predominantly composed of	
										lymphocytes. Micro focal myocyte injury	

2 50 F Moderna 1 Myocarditi Cardiovas cular 1 day Autopsy Histological examination showed inflammatory infiltration of the myocardium. The infiltrate was focal and interstitial. It was predominantly detected in sections taken from the right ventricular wall and interventricular septum. The histological and immunohistochemical characterization revealed that the inflammatory infiltrate was operadiminantly composed of lymphocytes. Micro focal myocyte injury was demonstrable. An inflammatory infiltrate was consisting. If was predominantly composed of lymphocytes. Micro focal myocyte injury was demonstrable. An inflammatory infiltrate was operadiminantly composed of lymphocytes. Micro focal myocyte injury was demonstrable. An inflammatory infiltrate was predominantly composed of lymphocytes. Micro focal myocyte injury was demonstrable. An inflammatory infiltrate was operadiminantly composed of lymphocytes. Micro focal myocyte injury was demonstrable. An inflammatory infiltration of the epicardium and the subepicardial fat tissue was concomitantly found. Lacked pre-existing. clinically relevant heart disease. Y, Y, Y: Y,	 					1	1				1
250FModerna1Myocarditi sCardiovas cular1 day cularAutopsyHistological examination showed 										was demonstrable. Lacked pre-existing,	
362FPfizer1Myocarditi sCardiovas cular7 daysAutopsyHistological and interstital. It was predominantly detected in sections taken from the right ventricular wall and interventricular septum. The histological and immunohistochemical characterization revealed that the inflammatory infiltrate was genominantly composed of lymphocytes. Micro focal myocyte injury was demonstrable. An inflammatory infiltration of the epicardium and the subepicardial fat tissue was concomitantly found. Lacked pre-existing, clinically relevant heart disease.Y.Y.Y.Y. Y Y Y362FPfizer1Myocarditi sCardiovas cular7 daysAutopsyHistological and infiltration of the myocardium. The infiltrate was predominantly detected in sections taken from the right ventricular wall and interventricular septum. The histological and interstitial. It was predominantly detected in sections taken from the right ventricular wall and interventricular septum. The histological and interstitial. It was predominantly detected in sections taken from the right ventricular wall and interventricular was predominantly composed of lymphocytes. Micro focal myocyte injury was demonstrable. An inflammatory inflitrate was predominantly on posed of lymphocytes. Micro focal myocyte injury was demonstrable. An inflammatory inflitrate was predominantly on posed of lymphocytes. Micro focal myocyte injury was gredominantly on posed of lymphocytes. Micro focal myocyte injury was gredominantly on posed of lymphocytes. Micro focal myocyte injury was gredominant on the everticular was predominant on the everticular was predominant on the everticular was predominant on the peicardium and th										clinically relevant heart disease.	
362FPfizer1MyocarditiCardiovas s7 daysAutopsy and and interstital. It was predominantly detected in sections taken from the right ventricular wall and interventricular septum. The histological and immunohistochemical characterization revealed that the inflammatory infiltrate was predominantly composed of lymphocytes. Micro focal myocyte injury was demonstrable. An inflammatory infiltration of the epicardium and the subepicardial fat tissue was concomitantly found. Lacked pre-existing, clinically relevant heart disease.Y. Y. Y: Y362FPfizer1Myocarditi sCardiovas s7 daysAutopsyHistological examination showed inflarmatory infiltrate was predominantly detected inflammatory infiltrate was focal and interstital. It was predominantly detected inflammatory infiltrate was focal and interstital. It was predominantly detected in sections taken from the right ventricular wall and interventricular septum. The histological and interstital. It was predominantly detected in sections taken from the right ventricular wall and interventricular septum. The histological and immunohistochemical characterization revealed that the inflammatory infiltrate was predominantly composed of lymphocytes. Micro focal myocyte injury was demonstrable. An inflammatory infiltrate was predominantly composed of lymphocytes. Micro focal myocyte injury was demonstrable. An inflamatory infiltrate was predominantly composed of lymphocytes. Micro focal myocyte injury was demonstrable. An inflamatory infiltrate was predominantly composed of lymphocytes. Micro focal myocyte injury was demonstrable. An inflamatory infiltrate was predominantly composed of lymphoc	2	50	F	Moderna	1	Myocarditi	Cardiovas	1 day	Autopsy	Histological examination showed	Y, Y, Y:
362FPfizer1Myocarditi sCardiovas s7 daysAutopsyHistological examination showed inflarmatory infiltrate was predominantly detected in sections taken from the right ventricular wall and interventricular septum. The histological and immunohistochemical characterization revealed that the inflammatory infiltrate was gendominantly composed of lymphocytes. Micro focal myocyte injury was demonstrable. An inflammatory infiltration of the picardium and the subepicardial fat tissue was concomitantly found. Lacked pre-existing, clinically relevant heart disease.Y.Y.Y.Y. Y362FPfizer1Myocarditi sCardiovas cular7 daysAutopsyHistological examination showed inflammatory infiltrate was focal and interstitial. It was predominantly detected in sections taken from the right ventricular wall and interventricular septum. The histological and immunohistochemical characterization reveale that the inflammatory infiltrate was gredominantly detected in sections taken from the right ventricular wall and interventricular septum. The histological and immunohistochemical characterization revealed that the inflammatory infiltrate was gredominantly composed of lymphocytes. Micro focal myocyte injury was demonstrable. An inflammatory infiltrate was gredominantly composed of lymphocytes. Micro focal myocyte injury was demonstrable. An inflammatory infiltrate was gredominantly composed of lymphocytes. Micro focal myocyte injury was demonstrable. An inflammatory infiltrate was gredominantly composed of lymphocytes. Micro focal myocyte injury was demonstrable. An inflammatory infiltrate was gredominantly composed of lymphocytes. Micro focal myocyte injury was demo						S	cular			inflammatory infiltration of the	Y
362FPfizer1Myocarditi sCardiovas cular7 daysAutopsy infiltration of the epicardium and the subepicardial fat tissue was foredominantly detected in sections taken from the right ventricular wall and interventricular septum. The histological and immunohistochemical characterization revealed that the inflammatory infiltrate was predominantly composed of lymphocytes. Micro focal myocyte injury was demonstrable. An inflammatory infiltration of the epicardium and the subepicardial fat tissue was concomitantly found. Lacked pre-existing, clinically relevant heart disease.Y, Y, Y: Y362FPfizer1Myocarditi sCardiovas cular7 daysAutopsyHistological examination showed interstitial. It was predominantly detected in sections taken from the right ventricular wall and interventricular septum. The histological and immunohistochemical characterization revealed that the inflammatory infiltrate was gredominantly detected in sections taken from the right ventricular wall and interventricular septum. The histological and immunohistochemical characterization revealed that the inflammatory infiltrate was gredominantly composed of lymphocytes. Micro focal myocyte injury was demonstrable. An inflammatory infiltration of the epicardium and the										myocardium. The infiltrate was focal and	
362FPfizer1Myocarditi sCardiovas cular7 daysAutopsyHistological examination showed influration of the epicardium and the subepicardial fat tissue was concomitantly relevant heart disease.Y, Y, Y: Y362FPfizer1Myocarditi sCardiovas cular7 daysAutopsyHistological examination showed influration of the epicardium and the subepicardial fat tissue was concomitantly relevant heart disease.Y, Y, Y: Y362FPfizer1Myocarditi sCardiovas cular7 daysAutopsyHistological examination showed influration of the epicardium and the subepicardial fat tissue was focal and interstitial. It was predominantly detected in sections taken from the right ventricular wall and interventricular septum. The histological and immunohistochemical characterization revealed that the influmatory infiltrate was focal and interstitial. It was predominantly detected in sections taken from the right ventricular wall and interventricular septum. The histological and immunohistochemical characterization revealed that the influmatory infiltrate was predominantly composed of lymphocytes. Micro focal myocyte injury was demonstrable. An inflammatory infiltrate was predominantly composed of lymphocytes. Micro focal myocyte injury was demonstrable. An inflammatory infiltrate was predominantly composed of lymphocytes. Micro focal myocyte injury was demonstrable. An inflammatory infiltrate was predominantly composed of lymphocytes. Micro focal myocyte injury was demonstrable. An inflammatory infiltrate was predominantly composed of lymphocytes. Micro focal myocyte injury was demonst										interstitial. It was predominantly detected	
362FPfizer1Myocarditi sCardiovas cular7 daysAutopsyHistological and immunohistochemical characterization revealed that the inflammatory infiltrate was predominantly composed of lymphocytes. Micro focal myocyte injury was demonstrable. An inflammatory infiltration of the epicardium and the subepicardial fat tissue was concomitantly found. Lacked pre-existing, clinically relevant heart disease.362FPfizer1Myocarditi sCardiovas cular7 daysAutopsyHistological examination showed infiltration of the myocardium. The infiltrate was focal and interstitial. It was predominantly detected in sections taken from the right ventricular wall and interventricular septum. The histological and immunohistochemical characterization revealed that the inflammatory infiltrate was predominantly composed of lymphocytes. Micro focal myocyte injury was demonstrable. An inflammatory infiltration of the epicardium and the										in sections taken from the right	
362FPfizer1Myocarditi sCardiovas cular7 daysAutopsyHistological examination showed infitration of the epicardium and the subepicardial fat tissue was concomitantly found. Lacked pre-existing, clinically relevant heart disease.Y, Y, Y:362FPfizer1Myocarditi sCardiovas cular7 daysAutopsyHistological examination showed interstital. It was predominantly detected in sections taken from the right ventricular wall and interventricular septum. The histological and immunohistochemical characterization revealed that the inflammatory infiltrate was gredominantly composed of lymphocytes. Micro focal myocyte injury was demonstrable. An inflammatory infiltration of the myocardium. The infiltrate was focal and interstital. It was predominantly detected in sections taken from the right ventricular wall and interventricular septum. The histological and immunohistochemical characterization revealed that the inflammatory infiltrate was gredominantly composed of lymphocytes. Micro focal myocyte injury was demonstrable. An inflammatory infiltrate was gredominantly composed of lymphocytes. Micro focal myocyte injury was demonstrable. An inflammatory infiltrate was gredominantly composed of lymphocytes. Micro focal myocyte injury was demonstrable. An inflammatory infiltrate was gredominantly composed of lymphocytes. Micro focal myocyte injury was demonstrable. An inflammatory infiltrate was gredominantly composed of lymphocytes. Micro focal myocyte injury was demonstrable. An inflammatory infiltrate was gredominantly composed of lymphocytes. Micro focal myocyte injury was demonstrable. An inflammatory infiltration of the epicardium and the <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>ventricular wall and interventricular</td> <td></td>										ventricular wall and interventricular	
Image: state in the state is the state in the state in the state is the state in the state in the state is the state in the state is the state in the state is the state is the state in the state is										septum. The histological and	
abb										immunohistochemical characterization	
3 62 F Pfizer 1 Myocarditi s Cardiovas cular 7 days Autopsy Histological examination showed in sections taken from the right ventricular wall and interventricular septum. The histological and immunohistochemical characterization revealed that the inflammatory infiltrate was predominantly detected in sections taken from the right ventricular wall and interventricular septum. The histological and immunohistochemical characterization revealed that the inflammatory infiltrate was predominantly composed of lymphocytes. Micro focal myocyte injury was demonstrable. An inflammatory infiltration of the epicardium and the Y, Y, Y:										revealed that the inflammatory infiltrate	
362FPfizer1Myocarditi sCardiovas cular7 daysAutopsyHistological examination showed inflatation of the subepicardial fat tissue was concomitantly found. Lacked pre-existing, clinically relevant heart disease.Y, Y, Y;362FPfizer1Myocarditi sCardiovas cular7 daysAutopsyHistological examination showed inflatation of the myocardium. The infiltrate was focal and interstitial. It was predominantly detected in sections taken from the right ventricular wall and interventricular septum. The histological and immunohistochemical characterization revealed that the inflammatory infiltrate was predominantly composed of lymphocytes. Micro focal myocyte injury was demonstrable. An inflammatory infiltration of the epicardium and the										was predominantly composed of	
aabaa											
aImage: Image: Imag										was demonstrable. An inflammatory	
a a a b b b cular found. Lacked pre-existing, clinically relevant heart disease. 3 62 F Pfizer 1 Myocarditi s Cardiovas cular 7 days Autopsy Histological examination showed inflammatory infiltration of the myocardium. The infiltrate was focal and interstitial. It was predominantly detected in sections taken from the right ventricular wall and interventricular septum. The histological and immunohistochemical characterization revealed that the inflammatory infiltrate was predominantly composed of lymphocytes. Micro focal myocyte injury was demonstrable. An inflammatory infiltrate										-	
3 62 F Pfizer 1 Myocarditi s Cardiovas cular 7 days Autopsy Histological examination showed inflammatory infiltration of the myocardium. The infiltrate was focal and interstitial. It was predominantly detected in sections taken from the right ventricular wall and interventricular septum. The histological and immunohistochemical characterization revealed that the inflammatory infiltrate was predominantly composed of lymphocytes. Micro focal myocyte injury was demonstrable. An inflammatory infiltration of the epicardium and the										subepicardial fat tissue was concomitantly	
3 62 F Pfizer 1 Myocarditi s Cardiovas cular 7 days Autopsy Histological examination showed inflammatory infiltration of the myocardium. The infiltrate was focal and interstitial. It was predominantly detected in sections taken from the right ventricular wall and interventricular septum. The histological and immunohistochemical characterization revealed that the inflammatory infiltrate was predominantly composed of lymphocytes. Micro focal myocyte injury was demonstrable. An inflammatory infiltration of the epicardium and the Y, Y, Y:										1 0, V	
s cular inflammatory infiltration of the myocardium. The infiltrate was focal and interstitial. It was predominantly detected in sections taken from the right ventricular wall and interventricular septum. The histological and immunohistochemical characterization revealed that the inflammatory infiltrate was predominantly composed of lymphocytes. Micro focal myocyte injury was demonstrable. An inflammatory infiltration of the epicardium and the										relevant heart disease.	
myocardium. The infiltrate was focal and interstitial. It was predominantly detected in sections taken from the right ventricular wall and interventricular septum. The histological and immunohistochemical characterization revealed that the inflammatory infiltrate was predominantly composed of lymphocytes. Micro focal myocyte injury was demonstrable. An inflammatory infiltration of the epicardium and the	3	62	F	Pfizer	1	Myocarditi	Cardiovas	7 days	Autopsy	Histological examination showed	Y, Y, Y:
interstitial. It was predominantly detected in sections taken from the right ventricular wall and interventricular septum. The histological and immunohistochemical characterization revealed that the inflammatory infiltrate was predominantly composed of lymphocytes. Micro focal myocyte injury was demonstrable. An inflammatory infiltration of the epicardium and the						S	cular			inflammatory infiltration of the	Y
in sections taken from the right ventricular wall and interventricular septum. The histological and immunohistochemical characterization revealed that the inflammatory infiltrate was predominantly composed of lymphocytes. Micro focal myocyte injury was demonstrable. An inflammatory infiltration of the epicardium and the										myocardium. The infiltrate was focal and	
Image: Section of the epicardium and the Image: Section of the epicardium and the										interstitial. It was predominantly detected	
Image: septum in the stological and immunohistochemical characterization revealed that the inflammatory infiltrate was predominantly composed of lymphocytes. Micro focal myocyte injury was demonstrable. An inflammatory infiltration of the epicardium and the										8	
immunohistochemical characterization revealed that the inflammatory infiltrate was predominantly composed of lymphocytes. Micro focal myocyte injury was demonstrable. An inflammatory infiltration of the epicardium and the										ventricular wall and interventricular	
revealed that the inflammatory infiltrate was predominantly composed of lymphocytes. Micro focal myocyte injury was demonstrable. An inflammatory infiltration of the epicardium and the											
was predominantly composed of lymphocytes. Micro focal myocyte injury was demonstrable. An inflammatory infiltration of the epicardium and the										immunohistochemical characterization	
Image:										revealed that the inflammatory infiltrate	
was demonstrable. An inflammatory infiltration of the epicardium and the										was predominantly composed of	
infiltration of the epicardium and the										lymphocytes. Micro focal myocyte injury	
										infiltration of the epicardium and the	
subepleardial fat tissue was concomitantly										subepicardial fat tissue was concomitantly	

									found. Lacked pre-existing, clinically relevant heart disease.	
4	55	Μ	Pfizer	2	Myocarditi s	Cardiovas cular	4 days	Autopsy	Histological examination showed inflammatory infiltration of the myocardium. The infiltrate was focal and interstitial. It was predominantly detected in sections taken from the right ventricular wall and interventricular septum. The histological and immunohistochemical characterization revealed that the inflammatory infiltrate was predominantly composed of lymphocytes. An inflammatory infiltration of the epicardium and the subepicardial fat tissue was concomitantly found. Lacked pre-existing, clinically relevant heart disease.	Y, Y, Y: Y
5	75	F	Pfizer	1	Myocarditi s	Cardiovas cular	1 day	Autopsy	Histological examination showedinflammatory infiltration of themyocardium. The infiltrate was focal andinterstitial. It was predominantly detectedin sections taken from the rightventricular wall and interventricularseptum. The histological andimmunohistochemical characterizationrevealed that the inflammatory infiltratewas predominantly composed oflymphocytes. An inflammatory infiltrationof the epicardium and the subepicardialfat tissue was concomitantly found.Lacked pre-existing, clinically relevantheart disease. Analysis for potentialinfectious agents causing a myocarditis	Y, Y, Y: Y

										revealed low viral copy numbers of human herpes virus 6.	
Hirschb uhl [<u>55</u>]	1	50s	Μ	Pfizer	1	COVID-19 pneumonia	Respirator y	~10 days	Autopsy	Acute and organizing DAD, small areas with acute pneumonia.	N, N, N: N
										SARS-CoV-2 spike serology [normal:<0.8 U/ml]: 21	
										SARS-CoV-2 nucleocapsid serology [normal:< COI 1]: 14	
	2	70s	M	Pfizer	1	COVID-19 pneumonia	Respirator y	~18 days	Autopsy	Acute DAD with focal signs of organization. SARS-CoV-2 spike serology [normal:<0.8 U/ml]: 45	N, N, N: N
										SARS-CoV-2 nucleocapsid serology [normal:< COI 1]: 1.3	
	3	70s	F	Pfizer	1	COVID-19 pneumonia	Respirator y	~192 days	Autopsy	Acute DAD, hemorrhage, congestion, acute pneumonia, aspergillosis.	N, N, N: N
										SARS-CoV-2 spike serology [normal:<0.8 U/ml]: >2500	
										SARS-CoV-2 nucleocapsid serology [normal:< COI 1]: 2.8	
	4	90s	F	Pfizer	2	COVID-19 pneumonia	Respirator y	~23 days	Autopsy	Acute and organizing DAD. SARS-CoV-2 spike serology [normal:<0.8 U/ml]: 34	N, N, N: N

									SARS-CoV-2 nucleocapsid serology [normal:< COI 1]: n.a.	
5	60s	Μ	Pfizer	1	COVID-19 pneumonia	Respirator y	~8 days	Autopsy	Acute DAD.	N, N, N: N
6	60s	F	AZ	1	Traumatic (cerebral bleeding)	Neurologic al	~19 days	Autopsy	No DAD, emphysema, mild edema.	N, Y, Y: Y
7	50s	Μ	Pfizer	1	COVID-19 pneumonia	Respirator v	~25 days	Autopsy	No DAD, severe congestion, edema, fibrosis, emphysema.	N, N, N: N
8	70s	Μ	AZ	1	COVID-19 pneumonia	Respirator	~46 days	Autopsy	Acute and organizing DAD, aspergillosis.	N, N, N: N
9	60s	F		1	COVID-19 Pneumonia	Respirator	~5 days	Autopsy	Acute DAD, severe congestion, acute pneumonia.	N, N, N: N
10	80s	M	Pfizer	1	COVID-19 Pneumonia	Respirator y		Autopsy	Acute DAD. SARS-CoV-2 spike serology [normal:<0.8 U/ml]: <0.8	N, N, N: N
11	50s	F	AZ	1	COVID-19 Pneumonia	Respirator	~20 days	Autopsy	Acute DAD, acute pneumonia, organizing pneumonia.	N, N, N: N
12	70s	Μ	Pfizer	1	COVID-19 Pneumonia	Respirator	~17 days	Autopsy	Acute and organizing DAD.	N, N, N: N
13	70s	F	Pfizer	1	Cardiac failure	Cardiovas cular		Autopsy	No DAD, congestion, emphysema.	Y, N, N: N
14	70s	Μ	Pfizer	1	Hemorrhag ic shock	Hematolog ical	~14 days	Autopsy	Acute DAD, hemorrhage, congestion, acute pneumonia.	Y, Y, Y: Y
15	90s	F	Pfizer	1	COVID-19 pneumonia	Respirator y	~39 days	Autopsy	Acute DAD, severe acute pneumonia.	N, N, N: N
16	60s	F	AZ	1	Cerebral ischemia	Neurologic al	~33 days	Autopsy	Organizing pneumonia, microthrombi.	Y, Y, Y: Y
17	70s	М	Pfizer	2	COVID-19 pneumonia and MI	MIS		Autopsy	Acute DAD.	N, Y, Y: Y

									SARS-CoV-2 spike serology [normal:<0.8 U/ml]: 407 SARS-CoV-2 nucleocapsid serology [normal:< COI 1]: negative	
18	80s	М	Pfizer	2	COVID-19 pneumonia and cardiac failure	MIS	~254 days	Autopsy	Mild acute DAD, acute pneumonia, aspergillosis, severe emphysema, severe congestion. SARS-CoV-2 spike serology [normal:<0.8 U/ml]: <0.8	N, N, N: N
19	80s	F	AZ	2	COVID-19 associated respiratory failure	Respirator y	~68 days	Autopsy	No DAD, congestion of blood vessels in lung parenchyma.	N, N, N: N
20	80s	F	Pfizer	2	COVID-19 pneumonia	Respirator y	~292 days	Autopsy	Mild acute DAD and acute pneumonia.SARS-CoV-2 spike serology [normal:<0.8	N, Y, Y: Y
21	70s	F	Pfizer	2	MI or pulmonary embolism COVID-19 associated	Hematolog ical	~152 days	Autopsy	Mild unspecific alterations to lung parenchyma, no DAD. SARS-CoV-2 spike serology [normal:<0.8 U/ml]: 278	Y, Y, Y: Y

									SARS-CoV-2 nucleocapsid serology [normal:< COI 1]: negative	
22	70s	M	Pfizer	2	Sepsis	Other	~234 days	Autopsy	Acute pneumonia, very mild acute DAD, marked mixed pneumoconiosis.	N, Y, Y: Y
									SARS-CoV-2 spike serology [normal:<0.8 U/ml]: >2500	
									SARS-CoV-2 nucleocapsid serology [normal:< COI 1]: negative	
23	70s	M	Sinovac	2	COVID-19 pneumonia	Respirator y	~41 days	Autopsy	Mild acute DAD, congestion. SARS-CoV-2 spike serology [normal:<0.8 U/ml]: <0.8	N, N, N: N
									SARS-CoV-2 nucleocapsid serology [normal:< COI 1]: 2.89	
24	60s	F	Pfizer	2	Aspiration pneumonia	Respirator v	~107 days	Autopsy	Emphysema, acute pneumonia.	N, N, N: N
25	60s	М	Pfizer	2	COVID-19 pneumonia	Respirator y	~106 days	Autopsy	Acute/organizing DAD severe emphysema, acute pneumonia.	N, Y, Y: Y
									SARS-CoV-2 spike serology [normal:<0.8 U/ml]: >2500	
									SARS-CoV-2 nucleocapsid serology [normal:< COI 1]: negative	

	26	70s	M	Pfizer	2	COVID-19 pneumonia	Respirator y	~170 days	Autopsy	Moderate acute DAD. SARS-CoV-2 spike serology [normal:<0.8 U/ml]: 223	N, N, N: N
										SARS-CoV-2 nucleocapsid serology [normal:< COI 1]: 33	
	27	70s	Μ	Pfizer	2	COVID-19 pneumonia	Respirator y	~168 days	Autopsy	Acute/organizing DAD.	N, N, N: N
						production	2	anys		SARS-CoV-2 spike serology [normal:<0.8 U/ml]: >2500	
										SARS-CoV-2 nucleocapsid serology [normal:< COI 1]: 21.6	
	28	50s	Μ	Pfizer	2	COVID-19 pneumonia	Respirator y	~156 days	Autopsy	Organizing DAD with residual acute DAD, aspergillosis.	N, N, N: N
										SARS-CoV-2 spike serology [normal:<0.8 U/ml]: 154	
										SARS-CoV-2 nucleocapsid serology [normal:< COI 1]: 11.1	
	29	90s	F	Pfizer	2	Myocardial infarction	Cardiovas cular	~121 days	Autopsy	In lungs, UIP, no DAD	Y, N, N: N
						and nephric abscess		uu jo		SARS-CoV-2 spike serology [normal:<0.8 U/ml]: >2500	
										SARS-CoV-2 nucleocapsid serology [normal:< COI 1]: 120	
Hoshino [<mark>56</mark>]	1	27	М	Moderna	1	Myocarditi s	Cardiovas cular	36 days	Autopsy	An autopsy revealed asymmetric left ventricular hypertrophy, thickening of the right ventricular wall (550 g; LV wall, 11– 16 mm; RV wall, 5–7 mm), myxomatous	Y, Y, Y: Y

			1	r							
										degeneration of the posterior leaflet of the mitral valve, and hypertrophy of the posteromedial papillary muscle. Microscopic findings revealed that cardiac myocytolysis and widespread fibrosis were observed, and significant mixed inflammatory infiltration (T cells, macrophages, and eosinophils) was observed in the left ventricular free wall and the anterior potion of the ventricular septum.	
Colombo [<u>57</u>]	1	78	F	Pfizer	2	COVID-19 ARDS	Respirator y	195 days	Autopsy	COVID-19 positive. Autopsy found patient died of acute respiratory distress syndrome. Brain atrophy found, possibly due to pre- diagnosed Parkinson's. Lung findings: Edema, bilateral fibrosis. Heart findings: Eccentric hypertrophy, biventricular dilation. Moderate aortic atherosclerosis; coronary stenosis above 50%.	N, N, N: N
	2	81	Μ	Pfizer	2	MI, respiratory failure, abdominal fibromatosi s, pulmonary embolism	MIS	270 days	Autopsy	COVID-19 positive. Autopsy found patient died of myocardial infarction, respiratory failure due to bacterial bronchopneumonia and abdominal fibromatosis. Patient had chronic ischemic cardiomyopathy.	Y, N, Y: Y

										Lung findings: Congestion, lower lobe fibrosis and pneumonia, pulmonary embolism. Heart findings: Eccentric hypertrophy, biventricular dilation. Aortic and mitral valve stenosis; moderate aortic atherosclerosis.	
3	6	60	F	Pfizer	2	Heart failure and small bowel ischemia	MIS	188 days	Autopsy	COVID-19 positive. Autopsy found patient died of heart failure due to auricle thrombosis and small bowel ischemia. Patient had paroxysmal AFib, active cancer for 5 years.	Y, N, N: N
										Lung findings: Edema and congestion. Lower left lung fibrosis. Right lung pneumonia. Heart findings: Biventricular dilation, mild aortic atherosclerosis.	
4	6	66	M	Pfizer	2	Respirator y failure, cardiomyo pathy, encephalop athy	MIS	250 days	Autopsy	 COVID-19 positive. Autopsy found patient died of respiratory failure due to bacterial pneumonia, cirrhotic cardiomyopathy, and encephalopathy. Brain findings: Patient had microglial activation, swollen astrocytes with pale nuclei, eosinophilic nucleoli, scanty cytoplasm, perivascular blood extravasations. Patient was previously diagnosed with hepatic encephalopathy. 	Y, N, N: N

										Lung findings: Edema and congestion. Focal fibrosis and right lung pneumonia. Heart findings: Concentric hypertrophy. Moderate aortic atherosclerosis; coronary	
	5	75	М	Pfizer	2	Pneumonia, brain hemorrhagi ng	MIS	298 days	Autopsy	stenosis. COVID-19 positive. Autopsy found patient died of rheumatoid arthritis related organizing pneumonia.	Y, N, N: N
										Brain findings: Perivascular microhemorrhages, microglial nodules and astroglial activation due to ischemic hypoxic damage with small vessels damage and hyaline arteriolosclerosis. Patient was previously diagnosed with epilepsy and cerebral vasculopathy. Lung findings: Congestion, bilateral focal fibrosis, lower left lobe pneumonia. Heart findings: Biventricular dilation,	
						CD C		40.1		mild aortic atherosclerosis.	
Mosna [<u>58</u>]	1	71	Μ	Pfizer	2	GBS	Neurologic al	10 days	Autopsy	The pleural cavity revealed firm adhesion between the visceral and parietal pleura on the right side. The lungs were bilaterally increased in size and weight (right 1260 g, left 950 g. Histological examination indicated post-aspiration absceding bronchopneumonia as the immediate cause of death of the patient.	N, Y, Y: Y

										Gross and microscopic examination of the brain tissue and meninges did not reveal any pathological changes apart from slight edema. A thorough examination of the peripheral nerves of the lumbar plexus showed areas of focal demyelination, prevalently perivascular infiltration by T- lymphocytes with a slight prevalence of T- cytotoxic over T-helper phenotype and the presence of numerous macrophages.	
Kaimori [<u>59</u>]	1	72	F	Pfizer	1	TMA	Hematolog ical	2 days	Autopsy	Autopsy revealed multiple microthrombi in the heart, brain, liver, kidneys, and adrenal glands. The thrombi were CD61 and CD42b positive and were located in the blood vessels primarily in the pericardial aspect of the myocardium and subcapsular region of the adrenal glands; their diameters were approximately 5-40 µm. Macroscopically, a characteristic myocardial hemorrhage was observed, and the histopathology of the characteristic thrombus distribution, which differed from that of hemolytic uremic syndrome and disseminated intravascular coagulation, suggested that the underlying pathophysiology may have been similar to that of thrombotic microangiopathy	Y, Y, Y: Y

References

- Hojberg Y, Abdeljaber M, Prahlow JA. Generalized Eosinophilia Following Moderna COVID-19 Vaccine Administration: A Case Report. Acad Forensic Pathol. 2023 Mar;13(1):9-15. doi: 10.1177/19253621231157933. Epub 2023 Mar 28. PMID: 37091194; PMCID: PMC10119868.
- 17. Nushida H, Ito A, Kurata H, Umemoto H, Tokunaga I, Iseki H, Nishimura A. A case of fatal multi-organ inflammation following COVID-19 vaccination. Leg Med (Tokyo). 2023 Mar 20;63:102244. doi: 10.1016/j.legalmed.2023.102244. Epub ahead of print. PMID: 36990036; PMCID: PMC10027302.
- 18. Jeon YH, Choi S, Park JH, Lee JK, Yeo NS, Lee S, Suh YL. Sudden Death Associated With Possible Flare-Ups of Multiple Sclerosis After COVID-19 Vaccination and Infection: A Case Report and Literature Review. J Korean Med Sci. 2023 Mar 13;38(10):e78. doi: 10.3346/jkms.2023.38.e78. PMID: 36918031; PMCID: PMC10010908.
- 19. Esposito M, Cocimano G, Vanaria F, Sessa F, Salerno M. Death from COVID-19 in a Fully Vaccinated Subject: A Complete Autopsy Report. Vaccines (Basel). 2023 Jan 9;11(1):142. doi: 10.3390/vaccines11010142. PMID: 36679987; PMCID: PMC9865400.
- 20. Chaves JJ, Bonilla JC, Chaves-Cabezas V, Castro A, Polo JF, Mendoza O, Correa-Rodríguez J, Piedrahita AC, Romero-Fandiño IA, Caro MV, González AC, Sánchez LK, Murcia F, Márquez G, Benavides A, Quiroga MDP, López J, Parra-Medina

A Review of Autopsy Findings in Deaths After COVID-19 Vaccination - Supplementary Appendix

- R. A postmortem study of patients vaccinated for SARS-CoV-2 in Colombia. Rev Esp Patol. 2023 Jan-Mar;56(1):4-9. doi: 10.1016/j.patol.2022.09.003. Epub 2022 Oct 31. PMID: 36599599; PMCID: PMC9618417.
- 21. Mörz M. A Case Report: Multifocal Necrotizing Encephalitis and Myocarditis after BNT162b2 mRNA Vaccination against COVID-19. Vaccines (Basel). 2022 Oct 1;10(10):1651. doi: 10.3390/vaccines10101651. PMID: 36298516; PMCID: PMC9611676.
- 22. Alunni V, Bernardi C, Chevalier N, Cabusat C, Quatrehomme G, Torrents J, Biglia E, Gaillard Y, Drici MD. Postmortem PF4 antibodies confirm a rare case of thrombosis thrombocytopenia syndrome associated with ChAdOx1 nCoV-19 anti-COVID vaccination. Int J Legal Med. 2023 Mar;137(2):487-492. doi: 10.1007/s00414-022-02910-1. Epub 2022 Oct 27. PMID: 36289074; PMCID: PMC9607767.
- 23. Takahashi M, Kondo T, Yamasaki G, Sugimoto M, Asano M, Ueno Y, Nagasaki Y. An autopsy case report of aortic dissection complicated with histiolymphocytic pericarditis and aortic inflammation after mRNA COVID-19 vaccination. Leg Med (Tokyo). 2022 Nov;59:102154. doi: 10.1016/j.legalmed.2022.102154. Epub 2022 Sep 29. PMID: 36191411; PMCID: PMC9519380.
- 24. Murata K, Nakao N, Ishiuchi N, Fukui T, Katsuya N, Fukumoto W, Oka H, Yoshikawa N, Nagao T, Namera A, Kakimoto N, Oue N, Awai K, Yoshimoto K, Nagao M. Four cases of cytokine storm after COVID-19 vaccination: Case report. Front Immunol. 2022 Aug 15;13:967226. doi: 10.3389/fimmu.2022.967226. PMID: 36045681; PMCID: PMC9420842.

- 25. Satomi H, Katano H, Kanno H, Kobayashi M, Ohkuma Y, Hashidume N, Usui T, Tsukada S, Ito I. An autopsy case of fulminant myocarditis after severe acute respiratory syndrome coronavirus 2 vaccine inoculation. Pathol Int. 2022 Oct;72(10):519-524. doi: 10.1111/pin.13267. Epub 2022 Aug 30. PMID: 36040128; PMCID: PMC9537995.
- 26. Suzuki H, Ro A, Takada A, Saito K, Hayashi K. Autopsy findings of post-COVID-19 vaccination deaths in Tokyo Metropolis, Japan, 2021. Leg Med (Tokyo). 2022 Nov;59:102134. doi: 10.1016/j.legalmed.2022.102134. Epub 2022 Aug 20. PMID: 36037554; PMCID: PMC9392553.
- 27. Mele F, Tafuri S, Stefanizzi P, D Amati A, Calvano M, Leonardelli M, Macorano E, Duma S, De Gabriele G, Introna F, De Donno A. Cerebral venous sinus thrombosis after COVID-19 vaccination and congenital deficiency of coagulation factors: Is there a correlation? Hum Vaccin Immunother. 2022 Nov 30;18(6):2095166. doi: 10.1080/21645515.2022.2095166. Epub 2022 Jul 27. PMID: 35895937; PMCID: PMC9746424.
- 28. Yoshimura Y, Sasaki H, Miyata N, Miyazaki K, Okudela K, Tateishi Y, Hayashi H, Kawana-Tachikawa A, Iwashita H, Maeda K, Ihama Y, Hatayama Y, Ryo A, Tachikawa N. An autopsy case of COVID-19-like acute respiratory distress syndrome after mRNA-1273 SARS-CoV-2 vaccination. Int J Infect Dis. 2022 Aug;121:98-101. doi: 10.1016/j.ijid.2022.04.057. Epub 2022 Apr 30. PMID: 35500794; PMCID: PMC9054706.
- 29. Roncati L, Manenti A, Corsi L. A Three-Case Series of Thrombotic Deaths in Patients over 50 with Comorbidities Temporally after modRNA COVID-19 Vaccination. Pathogens. 2022 Apr 3;11(4):435. doi: 10.3390/pathogens11040435. PMID: 35456110; PMCID: PMC9032304.

- 30. Kang DH, Na JY, Yang JH, Moon SH, Kim SH, Jung JJ, Cha HJ, Ahn JH, Park YW, Cho SY, Yu HK, Lee SH, Park MY, Kim JW, Byun JH. Fulminant Giant Cell Myocarditis following Heterologous Vaccination of ChAdOx1 nCoV-19 and Pfizer-BioNTech COVID-19. Medicina (Kaunas). 2022 Mar 20;58(3):449. doi: 10.3390/medicina58030449. PMID: 35334625; PMCID: PMC8950462.
- 31. Kamura Y, Terao T, Akao S, Kono Y, Honma K, Matsue K. Fatal thrombotic microangiopathy with rhabdomyolysis as an initial symptom after the first dose of mRNA-1273 vaccine: A case report. Int J Infect Dis. 2022 Apr;117:322-325. doi: 10.1016/j.ijid.2022.02.031. Epub 2022 Feb 18. PMID: 35189339; PMCID: PMC8853962.
- 32. Ishioka Y, Makiguchi T, Itoga M, Tanaka H, Taima K, Goto S, Tasaka S. Acute Exacerbation of Interstitial Lung Disease After SARS-CoV-2 Vaccination: A Case Series. Chest. 2022 Dec;162(6):e311-e316. doi: 10.1016/j.chest.2022.08.2213. PMID: 36494131; PMCID: PMC9723271.
- **33.** Gill JR, Tashjian R, Duncanson E. Autopsy Histopathologic Cardiac Findings in 2 Adolescents Following the Second COVID-19 Vaccine Dose. Arch Pathol Lab Med. 2022 Aug 1;146(8):925-929. doi: 10.5858/arpa.2021-0435-SA. PMID: 35157759.
- 34. Pomara C, Salerno M, Esposito M, Sessa F, Certo F, Tripodo C, Rappa F, Barbagallo GM. Histological and immunohistochemical findings in a fatal case of thrombotic thrombocytopenia after ChAdOx1 nCov-19 vaccination. Pathol Res Pract. 2022 Mar;231:153796. doi: 10.1016/j.prp.2022.153796. Epub 2022 Feb 4. PMID: 35144085.
- **35.** Yeo A, Kuek B, Lau M, Tan SR, Chan S. Post COVID-19 vaccine deaths Singapore's early experience. Forensic Sci Int. 2022 Jan 19;332:111199. doi: 10.1016/j.forsciint.2022.111199. Epub ahead of print. PMID: 35078041; PMCID: PMC8767909.

- 36. Ameratunga R, Woon ST, Sheppard MN, Garland J, Ondruschka B, Wong CX, Stewart RAH, Tatley M, Stables SR, Tse RD. First Identified Case of Fatal Fulminant Necrotizing Eosinophilic Myocarditis Following the Initial Dose of the Pfizer-BioNTech mRNA COVID-19 Vaccine (BNT162b2, Comirnaty): an Extremely Rare Idiosyncratic Hypersensitivity Reaction. J Clin Immunol. 2022 Apr;42(3):441-447. doi: 10.1007/s10875-021-01187-0. Epub 2022 Jan 3. PMID: 34978002; PMCID: PMC8720536.
- 37. Günther A, Brämer D, Pletz MW, Kamradt T, Baumgart S, Mayer TE, Baier M, Autsch A, Mawrin C, Schönborn L, Greinacher A, Thiele T. Complicated Long Term Vaccine Induced Thrombotic Immune Thrombocytopenia-A Case Report. Vaccines (Basel). 2021 Nov 17;9(11):1344. doi: 10.3390/vaccines9111344. PMID: 34835275; PMCID: PMC8622649.
- 38. Permezel F, Borojevic B, Lau S, de Boer HH. Acute disseminated encephalomyelitis (ADEM) following recent Oxford/AstraZeneca COVID-19 vaccination. Forensic Sci Med Pathol. 2022 Mar;18(1):74-79. doi: 10.1007/s12024-021-00440-7. Epub 2021 Nov 4. PMID: 34735684; PMCID: PMC8567127.
- 39. Choi S, Lee S, Seo JW, Kim MJ, Jeon YH, Park JH, Lee JK, Yeo NS. Myocarditis-induced Sudden Death after BNT162b2 mRNA COVID-19 Vaccination in Korea: Case Report Focusing on Histopathological Findings. J Korean Med Sci. 2021 Oct 18;36(40):e286. doi: 10.3346/jkms.2021.36.e286. PMID: 34664804; PMCID: PMC8524235.
- **40.** Schneider J, Sottmann L, Greinacher A, Hagen M, Kasper HU, Kuhnen C, Schlepper S, Schmidt S, Schulz R, Thiele T, Thomas C, Schmeling A. Postmortem investigation of fatalities following vaccination with COVID-19 vaccines. Int J Legal

Med. 2021 Nov;135(6):2335-2345. doi: 10.1007/s00414-021-02706-9. Epub 2021 Sep 30. PMID: 34591186; PMCID: PMC8482743.

- **41.** Verma AK, Lavine KJ, Lin CY. Myocarditis after Covid-19 mRNA Vaccination. N Engl J Med. 2021 Sep 30;385(14):1332-1334. doi: 10.1056/NEJMc2109975. Epub 2021 Aug 18. PMID: 34407340; PMCID: PMC8385564.
- 42. Wiedmann M, Skattør T, Stray-Pedersen A, Romundstad L, Antal EA, Marthinsen PB, Sørvoll IH, Leiknes Ernstsen S, Lund CG, Holme PA, Johansen TO, Brunborg C, Aamodt AH, Schultz NH, Skagen K, Skjelland M. Vaccine Induced Immune Thrombotic Thrombocytopenia Causing a Severe Form of Cerebral Venous Thrombosis With High Fatality Rate: A Case Series. Front Neurol. 2021 Jul 30;12:721146. doi: 10.3389/fneur.2021.721146. PMID: 34393988; PMCID: PMC8363077.
- 43. Pomara C, Sessa F, Ciaccio M, Dieli F, Esposito M, Giammanco GM, Garozzo SF, Giarratano A, Prati D, Rappa F, Salerno M, Tripodo C, Mannucci PM, Zamboni P. COVID-19 Vaccine and Death: Causality Algorithm According to the WHO Eligibility Diagnosis. Diagnostics (Basel). 2021 May 26;11(6):955. doi: 10.3390/diagnostics11060955. PMID: 34073536; PMCID: PMC8229116.
- 44. Althaus K, Möller P, Uzun G, Singh A, Beck A, Bettag M, Bösmüller H, Guthoff M, Dorn F, Petzold GC, Henkes H, Heyne N, Jumaa H, Kreiser K, Limpach C, Luz B, Maschke M, Müller JA, Münch J, Nagel S, Pötzsch B, Müller J, Schlegel C, Viardot A, Bäzner H, Wolf M, Pelzl L, Warm V, Willinek WA, Steiner J, Schneiderhan-Marra N, Vollherbst D, Sachs UJ, Fend F, Bakchoul T. Antibody-mediated procoagulant platelets in SARS-CoV-2-vaccination associated immune thrombotic

thrombocytopenia. Haematologica. 2021 Aug 1;106(8):2170-2179. doi: 10.3324/haematol.2021.279000. PMID: 34011137; PMCID: PMC8327736.

- 45. Edler C, Klein A, Schröder AS, Sperhake JP, Ondruschka B. Deaths associated with newly launched SARS-CoV-2 vaccination (Comirnaty®). Leg Med (Tokyo). 2021 Jul;51:101895. doi: 10.1016/j.legalmed.2021.101895. Epub 2021 Apr 17. PMID: 33895650; PMCID: PMC8052499.
- 46. Hansen T, Titze U, Kulamadayil-Heidenreich NSA, Glombitza S, Tebbe JJ, Röcken C, Schulz B, Weise M, Wilkens L. First case of postmortem study in a patient vaccinated against SARS-CoV-2. Int J Infect Dis. 2021 Jun;107:172-175. doi: 10.1016/j.ijid.2021.04.053. Epub 2021 Apr 16. PMID: 33872783; PMCID: PMC8051011.
- 47. Baronti A, Gentile F, Manetti AC, Scatena A, Pellegrini S, Pucci A, Franzini M, Castiglione V, Maiese A, Giannoni A, Pistello M, Emdin M, Aquaro GD, Di Paolo M. Myocardial Infarction Following COVID-19 Vaccine Administration: *Post Hoc, Ergo Propter Hoc*? Viruses. 2022 Jul 27;14(8):1644. doi: 10.3390/v14081644. PMID: 36016266; PMCID: PMC9413746.
- 48. Ittiwut C, Mahasirimongkol S, Srisont S, Ittiwut R, Chockjamsai M, Durongkadech P, Sawaengdee W, Khunphon A, Larpadisorn K, Wattanapokayakit S, Wetchaphanphesat S, Arunotong S, Srimahachota S, Pittayawonganon C, Thammawijaya P, Sutdan D, Doungngern P, Khongphatthanayothin A, Kerr SJ, Shotelersuk V. Genetic basis of sudden death after COVID-19 vaccination in Thailand. Heart Rhythm. 2022 Aug 5;19(11):1874–9. doi: 10.1016/j.hrthm.2022.07.019. Epub ahead of print. PMID: 35934244; PMCID: PMC9352648.

- 49. Greinacher A, Thiele T, Warkentin TE, Weisser K, Kyrle PA, Eichinger S. Thrombotic Thrombocytopenia after ChAdOx1 nCov-19 Vaccination. N Engl J Med. 2021 Jun 3;384(22):2092-2101. doi: 10.1056/NEJMoa2104840. Epub 2021 Apr 9.
 PMID: 33835769; PMCID: PMC8095372.
- 50. Mauriello A, Scimeca M, Amelio I, Massoud R, Novelli A, Di Lorenzo F, Finocchiaro S, Cimino C, Telesca R, Chiocchi M, Sun Q, Wang Y, Shi Y, Novelli G, Melino G. Thromboembolism after COVID-19 vaccine in patients with preexisting thrombocytopenia. Cell Death Dis. 2021 Aug 3;12(8):762. doi: 10.1038/s41419-021-04058-z. PMID: 34344867; PMCID: PMC8328816.
- Bjørnstad-Tuveng TH, Rudjord A, Anker P. Fatal cerebral haemorrhage after COVID-19 vaccine. Tidsskr Nor Laegeforen.
 2021 Apr 29;141. English, Norwegian. doi: 10.4045/tidsskr.21.0312. PMID: 33928772.
- 52. Scully M, Singh D, Lown R, Poles A, Solomon T, Levi M, Goldblatt D, Kotoucek P, Thomas W, Lester W. Pathologic Antibodies to Platelet Factor 4 after ChAdOx1 nCoV-19 Vaccination. N Engl J Med. 2021 Jun 10;384(23):2202-2211. doi: 10.1056/NEJMoa2105385. Epub 2021 Apr 16. PMID: 33861525; PMCID: PMC8112532.
- 53. Choi GJ, Baek SH, Kim J, Kim JH, Kwon GY, Kim DK, Jung YH, Kim S. Fatal Systemic Capillary Leak Syndrome after SARS-CoV-2Vaccination in Patient with Multiple Myeloma. Emerg Infect Dis. 2021 Nov;27(11):2973-2975. doi: 10.3201/eid2711.211723. Epub 2021 Aug 30. PMID: 34459725; PMCID: PMC8544977.

- 54. Schwab C, Domke LM, Hartmann L, Stenzinger A, Longerich T, Schirmacher P. Autopsy-based histopathological characterization of myocarditis after anti-SARS-CoV-2-vaccination. Clin Res Cardiol. 2023 Mar;112(3):431-440. doi: 10.1007/s00392-022-02129-5. Epub 2022 Nov 27. PMID: 36436002; PMCID: PMC9702955.
- 55. Hirschbühl K, Schaller T, Märkl B, Claus R, Sipos E, Rentschler L, Maccagno A, Grosser B, Kling E, Neidig M, Kröncke T, Spring O, Braun G, Bösmüller H, Seidl M, Esposito I, Pablik J, Hilsenbeck J, Boor P, Beer M, Dintner S, Wylezich C. High viral loads: what drives fatal cases of COVID-19 in vaccinees? an autopsy study. Mod Pathol. 2022 Aug;35(8):1013-1021. doi: 10.1038/s41379-022-01069-9. Epub 2022 Apr 1. PMID: 35365771; PMCID: PMC8974809.
- 56. Hoshino N, Yanase M, Ichiyasu T, Kuwahara K, Kawai H, Muramatsu T, Ishii H, Tsukamoto T, Morimoto SI, Izawa H. An autopsy case report of fulminant myocarditis: Following mRNA COVID-19 vaccination. J Cardiol Cases. 2022 Dec;26(6):391-394. doi: 10.1016/j.jccase.2022.06.006. Epub 2022 Jul 4. PMID: 35812802; PMCID: PMC9250935.
- 57. Colombo D, Del Nonno F, Marchioni L, Lalle E, Galli P, Vaia F, Falasca L. Autopsies Revealed Pathological Features of COVID-19 in Unvaccinated vs. Vaccinated Patients. Biomedicines. 2023 Feb 14;11(2):551. doi: 10.3390/biomedicines11020551. PMID: 36831087; PMCID: PMC9953314.
- 58. Mosna K, Vadkerti P, Papp L, Palkovic M, Janega P, Babal P. Guillain-Barré syndrome with lethal outcome following covid-19 vaccination - case report supported by autopsy examination. The Open Neurology Journal. 2022 Mar 10;16(1). doi:10.2174/1874205x-v16-e2207270

59. Kaimori R, Nishida H, Uchida T, Tamura M, Kuroki K, Murata K, Hatakeyama K, Ikeda Y, Amemiya K, Nishizono A, Daa T, Mori S. Histopathologically TMA-like distribution of multiple organ thromboses following the initial dose of the BNT162b2 mRNA vaccine (Comirnaty, Pfizer/BioNTech): an autopsy case report. Thromb J. 2022 Oct 6;20(1):61. doi: 10.1186/s12959-022-00418-7. PMID: 36203145; PMCID: PMC9540301.